1
|
Zhao B, Liu YX, Liang PP, Hu GQ, Liu JH. S-Arylation of Thioic S-Acid Using Thianthrenium Salts via Photoactivation of Electron Donor-Acceptor Complex. J Org Chem 2024; 89:12508-12513. [PMID: 39135492 DOI: 10.1021/acs.joc.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Thioesters make up an important class of bioactive compounds. Due to their chemoselectivity, they have been widely used in the synthesis of a wide range of complex bioactive molecules and natural products. At present, chemists have developed a variety of methods for the preparation of thioester compounds. However, these methods usually require the use of transition metal catalysis or harsh reaction conditions. The strategy of synthesizing thioester compounds via visible light-induced electron donor-acceptor (EDA) complex reactions avoids the problems associated with conventional methods through the development of photocatalysis. Here we report a sustainable method for thiocarbonylating aryl sulfonium salts via a visible light-induced EDA complex process without transition metals.
Collapse
Affiliation(s)
- Bin Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Xin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ping-Ping Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Guo-Qin Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Hui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Hu GQ, Zhang WY, Liu YX, Liu JH, Zhao B. Visible Light-Accelerated Palladium-Catalyzed Thiocarbonylation Using Oxalic Acid Monothioester with Aryl/Alkenyl Sulfonium Salts. J Org Chem 2023; 88:14351-14356. [PMID: 37802501 DOI: 10.1021/acs.joc.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Herein, we present a decarboxylative thiocarbonylation of aryl and alkenyl sulfonium salts with oxalic acid monothioethers (OAMs), which can be achieved by visible light-accelerated palladium catalysis. Sulfonium salts are widely available, and OAM is an easily accessible and stored reagent; this mild reaction method can also be used for the synthesis of different types of thioester compounds. The reaction represents a new application of visible light-accelerated palladium catalysis in catalytic decarboxylative cross-couplings.
Collapse
Affiliation(s)
- Guo-Qin Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Yan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Xin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Hui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Mao K, Lv L, Li Z. Amine-Induced Selective C-C Bond Cleavage of 2,2,2-Trifluoroethyl Carbonyls for the Synthesis of Ureas and Amides. J Org Chem 2023. [PMID: 37437158 DOI: 10.1021/acs.joc.3c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
An efficient and selective transformation of 2,2,2-trifluoroethyl carbonyls into ureas/amides with amines is reported. This protocol allows the selective cleavage of the C-C bond of 2,2,2-trifluoroethyl carbonyls under transition metal-free and oxidant-free conditions, which is in contrast to the analogous C-F or C-CF3 bond functionalization. This reaction reveals the unexplored reactivity of 2,2,2-trifluoroethyl carbonyls and exhibits a broad substrate range and good functional group tolerance.
Collapse
Affiliation(s)
- Kuantao Mao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
4
|
Yu ZL, Feng MH, Zhang PY, Xu H, Ge D, Ma M, Shen ZL, Chu XQ. Na 2S·9H 2O Enabled Defluorodisulfuration and Hydrodefluorination of Perfluorobutyl Tetralones: Synthesis of Trifluoromethyl 1,2-Dithioles. Org Lett 2023. [PMID: 37267202 DOI: 10.1021/acs.orglett.3c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An unprecedented defluorocyclization of perfluorobutyl tetralones with Na2S·9H2O was developed for the synthesis of trifluoromethyl 1,2-dithioles, which provided chemists novel access to biologically and pharmaceutically relevant organofluorides. Successive C(sp3)-F bond functionalization at the perfluoroalkyl chain is vital for the formation of four C-H/C-S/S-S bonds and a five-membered S-heterocycle assembly. Cheap, weakly toxic, and odorless inorganic sulfide Na2S·9H2O acts as both a disulfurating precursor and a hydrodefluorinating reagent in this tandem multi-bond-interconverting reaction.
Collapse
Affiliation(s)
- Zi-Lun Yu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Man-Hang Feng
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng-Yuan Zhang
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Li Z, Lan D, Zhou W, Li J, Zhu H, Yu C, Jiang X. Synthesis of C3-halo substituted bicyclo[1.1.1]pentylamines via halosulfoamidation of [1.1.1]propellane with sodium hypohalites and sulfonamides. Chem Commun (Camb) 2023; 59:6056-6059. [PMID: 37114292 DOI: 10.1039/d3cc01262j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Herein, we report a catalyst-free synthesis of C3-halo substituted bicyclo[1.1.1]pentylamines under mild conditions. The reaction involves the use of sodium hypohalites and sulfonamides to generate N-halosulfonamides in situ, which subsequently undergo radical addition with [1.1.1]propellane to yield the desired products with suitable functional group tolerance.
Collapse
Affiliation(s)
- Zhi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Deyou Lan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Wei Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Jiacheng Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Hui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| |
Collapse
|
6
|
Du X, Xu D, Xu G, Yu C, Jiang X. Synthesis of Imidized Cyclobutene Derivatives by Strain Release of [1.1.1]Propellane. Org Lett 2022; 24:7323-7327. [PMID: 36190793 DOI: 10.1021/acs.orglett.2c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the metal-free synthesis of imidized methylene cyclobutane derivatives via a strain-release driven addition reaction of [1.1.1]propellane. Using this strategy, the methylene cyclobutyl cation intermediate generated by protonation of [1.1.1]propellane was found to be trapped by nitriles to form a nitrilium ion intermediate, which subsequently reacted with carboxylic acids to produce imidized methylene cyclobutene derivatives via a Mumm-type rearrangement.
Collapse
Affiliation(s)
- Xiaofan Du
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Di Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Gongcheng Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
7
|
Lu H, Xiao RX, Shi CY, Song ZL, Lin HW, Zhang A. Synthesis of aryldifluoromethyl aryl ethers via nickel-catalyzed suzuki cross-coupling between aryloxydifluoromethyl bromides and boronic acids. Commun Chem 2022; 5:78. [PMID: 36697792 PMCID: PMC9814959 DOI: 10.1038/s42004-022-00694-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/22/2022] [Indexed: 01/28/2023] Open
Abstract
As a unique organofluorine fragment, gem-difluoromethylated motifs have received widespread attention. Here, a convenient and efficient synthesis of aryldifluoromethyl aryl ethers (ArCF2OAr') was established via Nickel-catalyzed aryloxydifluoromethylation with arylboronic acids. This approach features easily accessible starting materials, good tolerance of functionalities, and mild reaction conditions. Diverse late-stage difluoromethylation of many pharmaceuticals and natural products were readily realized. Notably, a new difluoromethylated PD-1/PD-L1 immune checkpoint inhibitor was conveniently synthesized and showed both improved metabolic stability and enhanced antitumor efficacy. Preliminary mechanistic studies suggested the involvement of a Ni(I/III) catalytic cycle.
Collapse
Affiliation(s)
- Heng Lu
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ruo-Xuan Xiao
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Chang-Yun Shi
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Zi-Lan Song
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hou-Wen Lin
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ao Zhang
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
8
|
Wang X, Dong ZB. A Recent Progress for the Synthesis of Thioester Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Wang
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Zhi-Bing Dong
- Wuhan Institute of Technology School of Chemistry and Environmental Engeering Liufang Campus, No. 206, Guanggu 1st Road 430205 Wuhan CHINA
| |
Collapse
|
9
|
Zhuang X, Ling L, Wang Y, Li B, Sun B, Su W, Jin C. Photoinduced Cascade C-N/C═O Bond Formation from Bromodifluoroalkyl Reagents, Amines, and H 2O via a Triple-Cleavage Process. Org Lett 2022; 24:1668-1672. [PMID: 35191309 DOI: 10.1021/acs.orglett.2c00233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A green, sustainable, and straightforward method for the synthesis of unsymmetrical oxalamides via photoinduced C-N/C═O bond formation of bromodifluoroacetamide, amine, and H2O through a triple-cleavage process has been developed. In addition, this approach also provides access to the known bioactive compounds, and a feasible reaction mechanism is proposed. Moreover, the advantages of this transformation, including mild reaction conditions, a broad substrate scope, and operational simplicity, make this protocol attractive for further applications.
Collapse
Affiliation(s)
- Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lan Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yingying Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingqian Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
10
|
Xu X, Zhou G, Ju G, Wang D, Li B, Zhao Y. Rhodium(III)-catalyzed benzo[c]azepine-1,3(2H)-dione synthesis via tandem C–H alkylation and intermolecular amination of N-methoxylbenzamide with 3-bromo-3,3-difluoropropene. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Tu Y, Shi P, Bolm C. Visible-Light-Mediated α-Ketoacylations of NH-Sulfoximines with gem-Difluoroalkenes. Org Lett 2022; 24:907-911. [PMID: 35040650 DOI: 10.1021/acs.orglett.1c04254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photochemical approach for the preparation of α-keto-N-acyl sulfoximines from NH sulfoximines and gem-difluoroalkenes has been developed. In the presence of NBS, the reactions proceed in air without the need of a photocatalyst or additional oxidant. Results of mechanistic studies suggest that the two oxygens in the products stem from water and dioxygen.
Collapse
Affiliation(s)
- Yongliang Tu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Peng Shi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
12
|
Jiang X, zheng Z, Gao Y, Lan D, Xu W, Wang Z, Chen G. Synthesis of Tetrasubstituted Alkenyl Nitriles via Cyanocarbene Addition of [1.1.1]Propellane. Org Chem Front 2022. [DOI: 10.1039/d2qo00186a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the metal-free synthesis of methylenecyclobutane containing tetrasubstituted alkenyl nitriles via a strain-release driven addition reaction of [1.1.1]propellane under mild conditions. Using this strategy, TMSN3 was shown to...
Collapse
|
13
|
Cai Y, Liu C, Liu G, Li C, Jiang H, Zhu C. Access to α,α-difluoro(arylthio)methyl oxetanes from α,α-difluoro(arylthio)methyl ketones and trimethylsulfoxonium halides: scope, mechanism and applications. Org Biomol Chem 2022; 20:1500-1509. [DOI: 10.1039/d1ob02268g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and practical method for the synthesis of α,α-difluoro(arylthio)methyl oxetanes is reported that occurs by the reaction of α,α-difluoro(arylthio)methyl ketones with trimethylsulfoxonium halides. This reaction undergoes the sequential Corey-Chaykovsky...
Collapse
|
14
|
Jiang X, Du X, Chen K, Han H, Xu D, Zhu B, Jiang L, Fang L, Yu C. Metal-free C3 α-aminoalkylation of quinoxalin-2(1H)-ones with amines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Murakami S, Nanjo T, Takemoto Y. Photocatalytic Activation of Elemental Sulfur Enables a Chemoselective Three-Component Thioesterification. Org Lett 2021; 23:7650-7655. [PMID: 34528809 DOI: 10.1021/acs.orglett.1c02904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A mild and chemoselective three-component thioesterification using olefins, α-ketoacids, and elemental sulfur has been developed. The photocatalytic activation of elemental sulfur, a cheap and abundant sulfur source, enables the rapid installation of a sulfur atom into molecules, reactions that ordinarily would require the use of reactive and malodorous sulfur-containing compounds such as thiols and thioacids. This novel reaction is characterized by high yields and a broad substrate scope, which enables the introduction of thioester moieties into complex molecules including a steroid, a peptide, and a nonprotected glycoside. Mechanistic studies indicated that the success of this transformation depends on the multiple roles played by the elemental sulfur, including those of a sulfurizing agent, a terminal oxidant, and a HAT mediator.
Collapse
Affiliation(s)
- Sho Murakami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Sang J, Feng L, Hu R, Chen J, Shang D, Bao Q, Rao W. Sc(OTf) 3-Catalyzed C2-Selective Cyanation/Defluorination Cascade of Perfluoroalkylated 3-Indolylmethanols and Application to the Synthesis of 3-Fluoro(perfluoroalkyl)-β-carbolines. Org Lett 2021; 23:7666-7671. [PMID: 34543569 DOI: 10.1021/acs.orglett.1c02932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An unprecedented Sc(OTf)3-catalyzed C2-selective cyanation/defluorination cascade of perfluoroalkylated 3-indolylmethanols with TMSCN is described, which provides a novel and practical strategy for the synthesis of structurally diverse 3-(2-cyano)-indolyl substituted gem-difluoroalkenes and β-fluoro-β-perfluoroalkylalkenes. The reaction features excellent regio- and stereoselectivity and broad substrate scope. Notably, the obtained gem-difluoroalkenes and β-fluoro-β-perfluoroalkylalkenes could be easily transformed into 3-fluoro(perfluoroalkyl)-β-carbolines with excellent efficiency simply by treating them with Grignard reagents or DIBAL-H under mild reaction conditions.
Collapse
Affiliation(s)
- Jingjing Sang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Feng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Rui Hu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jichao Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dandan Shang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qing Bao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
17
|
Zhu B, Han H, Su WK, Yan B, Li Z, Yu C, Jiang X. Highly Stereoselective Intramolecular Carbofluorination of Internal α,β-Ynones Promoted by Selectfluor. Org Lett 2021; 23:4488-4492. [PMID: 34029477 DOI: 10.1021/acs.orglett.1c01441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a metal-free intramolecular carbofluorination protocol for the synthesis of tetrasubstituted monofluoroalkenes from internal α,β-ynones and Selectfluor with both high stereoselectivity and broad functional group tolerance. The chelation between tetrafluoroborate anion and the oxygen present in the aldehyde group rendered the reaction highly stereoselective, with the tetrafluoroborate serving as the direct fluorine source. Therefore, with addition of sodium tetrafluoroborate, Selectfluor could be reused several times without sacrificing reactivity.
Collapse
Affiliation(s)
- Bingbin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Hang Han
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wei-Ke Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Boan Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
18
|
Zhao Z, Tian X, Tang P, Ren Y, Zhao S, Zheng X, Cheng X. Autocatalytic Friedel‐Crafts Acylation of Arenes without Additional Catalyst and Additive. ChemistrySelect 2021. [DOI: 10.1002/slct.202100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhe Zhao
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang Henan 471003 P. R. China
| | - Xinzhe Tian
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Peichen Tang
- School of Chemical Engineering Dalian University of Technology Dalian Liaoning 116024 P.R. China
| | - Yun‐Lai Ren
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Shuang Zhao
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang Henan 471003 P. R. China
| | - Xianfu Zheng
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Xinqiang Cheng
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang Henan 471003 P. R. China
| |
Collapse
|