1
|
Martí À, Armengol-Relats H, Sadurní A, Pérez-Puigdomènech MÀ, Echavarren AM. Synthesis of Daucane Natural Products Enabled by a Gold(I)-Catalyzed Tandem Cycloisomerization/(4 + 3) Cycloaddition. Org Lett 2025; 27:2305-2309. [PMID: 40015688 PMCID: PMC11915483 DOI: 10.1021/acs.orglett.4c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A divergent synthesis of three members of the daucane family of natural products is reported, enabled by a gold(I)-catalyzed cycloisomerization/formal (4 + 3) cycloaddition as the key step. The synthesis of penigrisacid A features a vanadium-catalyzed tandem epoxidation/SN2' cyclization, whereas a Suárez radical cyclization enables the synthesis of aspterric acid. This work has also led to the reassignment of the structure of penigrisacid A as well as a short formal synthesis of schisanwilsonene A.
Collapse
Affiliation(s)
- Àlex Martí
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Helena Armengol-Relats
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Anna Sadurní
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Miquel À Pérez-Puigdomènech
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| |
Collapse
|
2
|
You Y, Zhang XJ, Xiao W, Kunthic T, Xiang Z, Xu C. Unified enantiospecific synthesis of drimane meroterpenoids enabled by enzyme catalysis and transition metal catalysis. Chem Sci 2024; 15:19307-19314. [PMID: 39568920 PMCID: PMC11575645 DOI: 10.1039/d4sc06060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
Merging the advantages of biocatalysis and chemocatalysis in retrosynthetic analysis can significantly improve the efficiency and selectivity of natural product synthesis. Here, we describe a unified approach for the synthesis of drimane meroterpenoids by combining heterologous biosynthesis, enzymatic hydroxylation, and transition metal catalysis. In phase one, drimenol was produced by engineering a biosynthetic pathway in Escherichia coli. Cytochrome P450BM3 from Bacillus megaterium was engineered to catalyze the C-3 hydroxylation of drimenol. By means of nickel-catalyzed reductive coupling, six drimane meroterpenoids (+)-hongoquercins A and B, (+)-ent-chromazonarol, 8-epi-puupehenol, (-)-pelorol, and (-)-mycoleptodiscin A were synthesized in a concise and enantiospecific manner. This strategy offers facile access to the congeners of the drimane meroterpenoid family and lays the foundation for activity optimization.
Collapse
Affiliation(s)
- Yipeng You
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
| | - Xue-Jie Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Wen Xiao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center Guangqiao Road, Guangming District Shenzhen 518132 P. R. China
| | - Chen Xu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
| |
Collapse
|
3
|
Rahman MA, Cellnik T, Ahuja BB, Li L, Healy AR. A catalytic enantioselective stereodivergent aldol reaction. SCIENCE ADVANCES 2023; 9:eadg8776. [PMID: 36921040 PMCID: PMC10017038 DOI: 10.1126/sciadv.adg8776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The aldol reaction is among the most powerful and strategically important carbon-carbon bond-forming transformations in organic chemistry. The importance of the aldol reaction in constructing chiral building blocks for complex small-molecule synthesis has spurred continuous efforts toward the development of direct catalytic variants. The realization of a general catalytic aldol reaction with control over both the relative and absolute configurations of the newly formed stereogenic centers has been a longstanding goal in the field. Here, we report a decarboxylative aldol reaction that provides access to all four possible stereoisomers of the aldol product in one step from identical reactants. The mild reaction can be carried out on a large scale in an open flask, and generates CO2 as the only by-product. The method tolerates a broad substrate scope and generates chiral β-hydroxy thioester products with substantial downstream utility.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates (UAE)
| | - Torsten Cellnik
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates (UAE)
| | - Brij Bhushan Ahuja
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates (UAE)
| | - Liang Li
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates (UAE)
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates (UAE)
| | - Alan R. Healy
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, United Arab Emirates (UAE)
| |
Collapse
|
4
|
Zhu HT, Liang CM, Li TY, Li LY, Zhang RL, Wang JN, Qi RQ, Zhang JM, Yang RH, Yang YQ, Zhou AX, Jin X, Zhou NN. Dual Proton/Silver-Catalyzed Serial (5 + 2)-Cycloaddition and Nazarov Cyclization of ( E)-2-Arylidene-3-hydroxyindanones with Conjugated Eneynes: Synthesis of Indanone-Fused Benzo[ cd]azulenes. J Org Chem 2023; 88:3409-3423. [PMID: 36847758 DOI: 10.1021/acs.joc.2c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A one-pot step-economic tandem process involving (5 + 2)-cycloaddition and Nazarov cyclization reactions has been reported for the facile synthesis of indanone-fused benzo[cd]azulenes from (E)-2-arylidene-3-hydroxyindanones and conjugated eneynes. This highly regio- and stereoselective bisannulation reaction is enabled by dual silver and Brønsted acid catalysis and opens up a new avenue for the construction of important bicyclo[5.3.0]decane skeletons.
Collapse
Affiliation(s)
- Hai-Tao Zhu
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Chun-Miao Liang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Ting-Yan Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Lin-Yan Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Rui-Ling Zhang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jun-Na Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Rui-Qing Qi
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jia-Min Zhang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Ruo-Han Yang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Yin-Qi Yang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - An-Xi Zhou
- Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao 334000, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Ni-Ni Zhou
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
5
|
Yu MZ, Chen KY, Zhang YB, Zhang CX, Xiang Z. Enantioselective conjugate addition of malonates to α,β-unsaturated aldehydes catalysed by 4-oxalocrotonate tautomerase. Org Biomol Chem 2023; 21:2086-2090. [PMID: 36806856 DOI: 10.1039/d3ob00111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The enantioselective conjugate addition of malonates to α,β-unsaturated aldehydes catalysed by 4-oxalocrotonate tautomerase is described. High conversions, high enantioselectivities, and good isolation yields were achieved for a range of substrates. We further completed a four-step synthesis of the antidepressant (+)-femoxetine by utilizing this reaction and an enzymatic reductive amination reaction.
Collapse
Affiliation(s)
- Ming-Zhu Yu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yi-Bin Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Chang-Xuan Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. .,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.,AI for Science (AI4S) Preferred Program, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
6
|
Du X, Liu H, Wu Y, Tang Y. Bio-inspired formal total synthesis of (±)-bisabosqual A. Org Chem Front 2023. [DOI: 10.1039/d2qo01697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new approach was developed to construct a hexahydrobenzofurobenzopyran ring system by an oxa-[3+3], Diels–Alder reaction and oxidative aromatization. As a synthetic application, the bio-inspired formal synthesis of bisabosqual A was achieved.
Collapse
Affiliation(s)
- Xuanxuan Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Hainan Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yumeng Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
7
|
Liang Y, Li D, Zheng Y, Shen Y, Li Q, Wei M, Yang H, Ye S, Chen C, Zhu H, Zhang Y. Virenscarotins A-M, thirteen undescribed carotane sesquiterpenes from the fungus Trichoderma virens. PHYTOCHEMISTRY 2022; 203:113368. [PMID: 35977601 DOI: 10.1016/j.phytochem.2022.113368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A document investigation on the fungus Trichoderma virens led to the isolation of thirteen undescribed carotane sesquiterpenes and homologous. All structures were elucidated on the basis of NMR and HRESIMS data, and their absolute configurations were assigned by ECD calculation. Especially, virenscarotins A and B were first ramifications forged by aldol condensation of 4-hydroxy-3-isopentenyl-benzaldehyde with two hydroxyl groups in ring A of traditional carotane sesquiterpenes. Ring rearrangement/expansion and oxidative cleavage of normal carotane sesquiterpenes lead to the six-membered ring A of compound virenscarotin C and the ring A cleavage of compound virenscarotin D. All compounds were evaluated for cytotoxic, anti-inflammatory, and seed germination inhibitory activities.
Collapse
Affiliation(s)
- Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Dongyan Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Haojie Yang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Diseaserelated Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Saiyi Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
8
|
ZHANG H, TANG X. Combining microbial and chemical syntheses for the production of complex natural products. Chin J Nat Med 2022; 20:729-736. [DOI: 10.1016/s1875-5364(22)60191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/28/2022]
|
9
|
Vollmann DJ, Winand L, Nett M. Emerging concepts in the semisynthetic and mutasynthetic production of natural products. Curr Opin Biotechnol 2022; 77:102761. [DOI: 10.1016/j.copbio.2022.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
10
|
Huang J, Cao T, Zhang Z, Yang Z. Semisynthesis of (-)-Bufospirostenin A Enabled by Photosantonin Rearrangement Reaction. J Am Chem Soc 2022; 144:2479-2483. [PMID: 35112846 DOI: 10.1021/jacs.1c12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An enantioselective semisynthesis of (-)-bufospirostenin A is described. The key steps in the synthesis involve use of our proposed biomimetic and diastereoselective photosantonin rearrangement reaction for construction of the 5/7 bicyclic motif, and a Co-catalyzed reversible double-bond isomerization reaction for installing the double bond in the seven-membered ring.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tingting Cao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
11
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
12
|
Zhao P, Xin BS, Qin SY, Li ZY, Lin B, Yao GD, Song SJ, Huang XX. Characteristic guaiane sesquiterpenes from Daphne penicillata and ECD/NMR-based assignment of C-1 configuration. Org Chem Front 2022. [DOI: 10.1039/d2qo01261h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
40 compounds including the first C17 homo-guaiane sesquiterpene (1) were isolated from Daphne penicillata and an efficient method using ECD/NMR strategy to access the C-1 configuration of characteristic guaiane sesquiterpenes has been developed.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ben-Song Xin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shu-Yan Qin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhi-Yuan Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
13
|
Echavarren AM, Armengol-Relats H, Mato M, Escofet I. Assembling Complex Structures through Cascade and Cycloaddition Processes via Non-Acceptor Gold or Rhodium Carbenes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1535-3215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe ability of highly energetic metal–carbene intermediates to engage in complex cascade or formal cycloaddition processes is one of the most powerful tools for building intricate molecular architectures in a straightforward manner. Among this type of organometallic intermediates, non-acceptor metal carbenes are particularly challenging to access and, therefore, have experienced slower development. In this regard, our group has exploited the use of electrophilic gold(I) complexes to selectively activate certain classes of substrates for the generation of this type of intermediate. Thus, very different types of molecules, such as enynes or 7-substituted cycloheptatrienes, lead to the formation of carbenes under gold(I) catalysis. Related rhodium(II) carbenes can also be generated from cycloheptatrienes. In this account, we aim to summarize our efforts towards the in situ generation of such highly versatile organometallic species as well as studies on their reactivity through formal cycloadditions or complex cascade reactions.1 Introduction2 Generation of Au(I)-Vinylcarbenes via a Cycloisomerization/1,5-Alkoxy Migration Cascade2.1 Intramolecular Trapping of Au(I) Vinylcarbenes2.1.1 Applications in Total Synthesis2.2 Intermolecular Trapping of Au(I) Vinylcarbenes2.2.1 Total Synthesis of Schisanwilsonene A2.2.2 Trapping with Furans, 1,3-Dicarbonyl Compounds and Cyclic Alkenes2.2.3 Mechanism of the Cycloisomerization/1,5-Migration Sequence and the Role of the OR Migrating Group2.2.4 (4+3) Cycloadditions from Enynes3 Formal Cycloadditions of Simple Donor Metal Carbenes3.1 The Metal-Catalyzed Retro-Buchner Reaction3.2 Formal Cycloadditions with Non-Acceptor Carbenes via Metal-Catalyzed Aromative Decarbenations3.2.1 (4+1) Cycloadditions of Au(I) Carbenes3.2.2 (3+2) Cycloadditions of Au(I) Carbenes3.2.3 (4+3) Cycloadditions of Rh(II) Carbenes4 Concluding Remarks
Collapse
Affiliation(s)
- Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili
| | - Helena Armengol-Relats
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili
| | - Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili
| | - Imma Escofet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili
| |
Collapse
|
14
|
Abstract
The Pd-catalyzed carbon-carbon bond formation pioneered by Heck in 1969 has dominated medicinal chemistry development for the ensuing fifty years. As the demand for more complex three-dimensional active pharmaceuticals continues to increase, preparative enzyme-mediated assembly, by virtue of its exquisite selectivity and sustainable nature, is poised to provide a practical and affordable alternative for accessing such compounds. In this minireview, we summarize recent state-of-the-art developments in practical enzyme-mediated assembly of carbocycles. When appropriate, background information on the enzymatic transformation is provided and challenges and/or limitations are also highlighted.
Collapse
Affiliation(s)
- Weijin Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Douglass F Taber
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Hans Renata
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|