1
|
Khan S, Baire B. The Vicinal-Diiodination of the HDDA-Benzynes by N-Iodo- succinimide (NIS) Through a Radical Pathway. Chemistry 2025; 31:e202500185. [PMID: 40320750 DOI: 10.1002/chem.202500185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
The 1,2-diradical reactivity of the HDDA-benzynes (thermal) has not been explored well in comparison to their ionic reactivity. Accordingly, the radical trapping reactions of these reactive intermediates are very scarce in literature. Herein, we report the iodine-radical trapping reaction of the HDDA-benzynes for the construction of structurally divergent vicinal-diiodo arenes. The N-iodosuccinimide (NIS) has been employed as the source of radical iodine under thermal heating conditions. The existence of the arene-radical intermediates and the radical mechanism has been supported by the EPR spectral analysis of the reaction mixture. Several fruitful control experiments suggested that the 4-iodination (mono-) of the HDDA-benzynes is faster than the 5-iodiniation. The process is general in terms of substituents on the diynes as well as the nature of the tethering units. To the best of our knowledge, this is the first report on the vicinal-diiodination as well as radical diiodination of HDDA-benzynes.
Collapse
Affiliation(s)
- Siddique Khan
- Department of Chemistry Institution, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600036, India
| | - Beeraiah Baire
- Department of Chemistry Institution, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600036, India
| |
Collapse
|
2
|
Wang F, Dong G, Yang S, Ji CL, Liu K, Han J, Xie J. Selective Functionalization of Alkenes and Alkynes by Dinuclear Manganese Catalysts. Acc Chem Res 2024; 57:2985-3006. [PMID: 39356824 DOI: 10.1021/acs.accounts.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ConspectusAlkenes and alkynes are fundamental building blocks in organic synthesis due to their commercial availability, bench-stability, and easy preparation. Selective functionalization of alkenes and alkynes is a crucial step for the synthesis of value-added compounds. Precise control over these reactions allows efficient construction of complex molecules with new functionalities. In recent decades, second- and third-row precious transition metal catalysts (palladium, platinum, rhodium, ruthenium) have been pivotal in the development of metal-catalyzed synthetic methodology. These metals exhibit excellent catalytic activity and selectivity, enabling efficient synthesis of functionalized organic molecules. However, recovery and reuse of precious metals have long been a challenge in this field. In recent years, exploration of earth-abundant metal-catalyzed organic reactions has interested both academic and industrial researchers. The development of such catalytic systems offers a promising approach to overcome the limitations of precious metal catalysts. For example, manganese is the third most naturally abundant transition metal with minimal toxicity and excellent biocompatibility. It exhibits good catalytic activity in several organic reactions, including C-H bond functionalization, selective reduction, and radical reactions. This Account outlines our recent progress in dinuclear manganese catalysis for selective functionalization of alkenes and alkynes. We have established the elementary manganese(I)-catalysis in transmetalation with R-B(OH)2. This finding has enabled us to apply the catalyst for the selective 1,2-difunctionalization of structurally diverse alkenes and alkynes. Mechanistic studies suggest a double manganese center synergistic activation model, as superior to Mn(CO)5Br in some cases. In addition, we have developed a ligand-tuned metalloradical strategy of dinuclear manganese catalysts (Mn2(CO)10), bridging the gap between the organometallics and radical chemistry, highlighting the unique radical functionalization of alkenes. Interestingly, using the same starting materials, different ligands can deliver completely different products. Meanwhile, a cooperative catalysis strategy involving manganese and other catalysts (e.g., cobalt, iminium) has also been developed and is briefly discussed. For manganese/iminium synergistic catalysis, a new mechanism for migratory insertion and demetalization-isomerization in synergistic HOMO-LUMO activation was disclosed. This strategy expands the application of low-valent manganese catalysts for enantioselective C-C bond-forming reactions. New reaction discovery is outpacing mechanism studies for dinuclear manganese catalysis, and future studies with time-resolved spectroscopy will improve understanding of the mechanism. Based on these intriguing findings, the precise functionalization of alkenes and alkynes by dinuclear manganese catalysts will expedite a novel activation model to enable late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guichao Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Suqi Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Zuo L, Yu F, Zhao S, Wang W, Wang S. Copper-Catalyzed, Intramolecular Amination of Unactivated C(sp 3)-H Bonds through Radical Relay. J Org Chem 2024; 89:13077-13084. [PMID: 39208327 DOI: 10.1021/acs.joc.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although copper-catalyzed amination of activated C(sp3)-H bonds through radical relay has been developed, amination of unactivated C(sp3)-H bonds is rare. Herein, copper-catalyzed intramolecular amination of remote unactivated C(sp3)-H bonds is reported. The reaction is conducted in a mild and effective manner with moderate to good yields, demonstrating broad tolerance toward various functional groups and exhibiting complete regio- and chemoselectivities. This innovation supplies novel synthetic pathways for the construction of saturated nitrogenated heterocycles.
Collapse
Affiliation(s)
- Liyan Zuo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Fan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shuai Zhao
- Qingdao Zhongda Agritech Co., Ltd., Building 1, No. 368 Hedong Road, High-tech Zone, Qingdao, Shandong 266100, P. R. China
| | - Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
4
|
Gao J, He XC, Liu YL, Ye ZP, Guan JP, Chen K, Xiang HY, Yang H. Photoredox/Nickel Dual Catalysis-Enabled Cross-Dehydrogenative C-H Amination of Indoles with Unactivated Amine. Org Lett 2023; 25:7716-7720. [PMID: 37842950 DOI: 10.1021/acs.orglett.3c03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, a direct cross-dehydrogenative C-H amination of indoles has been successfully achieved, enabled by the merger of photocatalysis with nickel catalysis. This developed process does not require stoichiometric oxidants and prefunctionalization of amine partners, providing a concise platform for C-N bond formation. Moreover, the synthetic practicality of this transformation was well revealed by its high step- and atom-economy, high reaction efficiency, and broad functional group tolerance.
Collapse
Affiliation(s)
- Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
5
|
Zhou T, Chen H, Liu Y, Wang H, Yan Q, Wang W, Chen F. Visible-Light-Promoted Xanthate-Transfer Cyclization Reactions of Unactivated Olefins under Photocatalyst- and Additive-Free Conditions. J Org Chem 2022; 87:15582-15597. [DOI: 10.1021/acs.joc.2c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tongyao Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hang Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
6
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
7
|
Jia SM, Huang YH, Wang ZL, Fan FX, Fan BH, Sun HX, Wang H, Wang F. Hydroamination of Unactivated Alkenes with Aliphatic Azides. J Am Chem Soc 2022; 144:16316-16324. [PMID: 36047787 DOI: 10.1021/jacs.2c07643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report here an efficient and highly diastereoselective intermolecular anti-Markovnikov hydroamination of unactivated alkenes with aliphatic azides in the presence of silane. The system tolerates a wide range of azides and alkenes and operates with alkene as limiting reagent. Mechanistic studies suggest a radical chain pathway that involves aminium radical formation, radical addition to alkenes and HAT from silane to β-aminium alkyl radical. The use of sterically bulky silane is proposed to contribute to the excellent diastereoselectivity for HAT. Computational analysis uncovers the reaction pathway of aliphatic azide activation with silyl radical for aminyl radical formation.
Collapse
Affiliation(s)
- Si-Ming Jia
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Hang Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhan-Lin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fang-Xu Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo-Han Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Xiang Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Wu M, Zhang H, Wang T, Lin S, Guo Z, Gao H, Zhou Z, Yi W. Rh(III)-Catalyzed chemo-, regio- and stereoselective carboamination of sulfonyl allenes with N-phenoxy amides or N-enoxy imides. Chem Commun (Camb) 2022; 58:9286-9289. [PMID: 35904085 DOI: 10.1039/d2cc02982k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Rh(III)-catalyzed chemo-, regio- and stereoselective carboamination of sulfonyl allenes has been realized by virtue of either N-phenoxy amides or N-enoxy imides simultaneously acting as the C- and N-sources, via redox-neutral tandem C-H activation/allene insertion/oxidative addition/C-N bond formation for the direct construction of allylamine derivatives equipped with an α-quaternary carbon center. This protocol features high atom-economy with good substrate compatibility and exhibits profound synthetic potential for late-stage C-H modification of complex molecules.
Collapse
Affiliation(s)
- Min Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Haiman Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Ting Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Shuang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Ziyang Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| |
Collapse
|
9
|
Pan Y, Luo ZL, Yang J, Han J, Yang J, yao Z, Xu L, Wang P, Shi Q. Cobalt‐Catalyzed Selective Transformation of Levulinic Acid and Amines into Pyrrolidines and Pyrrolidinones under H2. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | - zhen yao
- Renmin University of China CHINA
| | - Lijin Xu
- Renmin University of China CHINA
| | | | | |
Collapse
|
10
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
11
|
Wang X, Xue Y, Hu W, Shi L, Zhu X, Hao XQ, Song MP. Cu(II)-Catalyzed N-Directed Distal C(sp 3)-H Heteroarylation of Aliphatic N-Fluorosulfonamides. Org Lett 2022; 24:1055-1059. [PMID: 35080894 DOI: 10.1021/acs.orglett.1c04280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed δ-regioselective C(sp3)-H heteroarylation of N-fluorosulfonamides has been developed. A broad range of heteroarenes were well tolerated and reacted with various N-fluorosulfonamides to give the corresponding heteroarylated amides in good yields. Notably, all types (1°, 2°, and 3°) of δ-C(sp3)-H bonds in the N-fluorosulfonamides could be regioselectively activated through the 1,5-HAT process. This protocol provides a practical strategy for the functionalization of heteroarenes and amides via forging a C(sp3)-C(sp2) bond.
Collapse
Affiliation(s)
- Xu Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Yuting Xue
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
12
|
Noten EA, McAtee RC, Stephenson CRJ. Catalytic Intramolecular Aminoarylation of Unactivated Alkenes with Aryl Sulfonamides. Chem Sci 2022; 13:6942-6949. [PMID: 35774166 PMCID: PMC9200115 DOI: 10.1039/d2sc01228f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Arylethylamines are abundant motifs in myriad natural products and pharmaceuticals, so efficient methods to synthesize them are valuable in drug discovery. In this work, we disclose an intramolecular alkene aminoarylation cascade that exploits the electrophilicity of a nitrogen-centered radical to form a C–N bond, then repurposes the nitrogen atom's sulfonyl activating group as a traceless linker to form a subsequent C–C bond. This photoredox catalysis protocol enables the preparation of densely substituted arylethylamines from commercially abundant aryl sulfonamides and unactivated alkenes under mild conditions. Reaction optimization, scope, mechanism, and synthetic applications are discussed. A photochemical assembly of cyclic arylethylamines occurs by cascade radical annulation and desulfonylative rearrangement in N-acyl sulfonamides. This aminoarylation is made possible through judicious design intended to thwart undesired reactivity.![]()
Collapse
Affiliation(s)
- Efrey A Noten
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Rory C McAtee
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Corey R J Stephenson
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| |
Collapse
|
13
|
Wei H, Zhang Z, Zhang X, Gao S, Wang T, Zhao M, Wei P, Wang M. Copper-catalyzed intramolecular iminolactonization cyclization reactions of remote C(sp 3)–H bonds in carboxamides. Org Biomol Chem 2022; 20:8912-8916. [DOI: 10.1039/d2ob01711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel and efficient synthetic method for iminolactones by copper-catalyzed intramolecular C(sp3)–H bond functionalization of carboxamides via a cascade process is reported for the first time.
Collapse
Affiliation(s)
- He Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Zhenhua Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xiang Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Shuo Gao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Tongtong Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Mengmeng Zhao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Pifeng Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Min Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
14
|
Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021; 122:2292-2352. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.
Collapse
Affiliation(s)
- Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
15
|
Song X, Meng S, Zhang H, Jiang Y, Chan ASC, Zou Y. Dibrominated addition and substitution of alkenes catalyzed by Mn 2(CO) 10. Chem Commun (Camb) 2021; 57:13385-13388. [PMID: 34823257 DOI: 10.1039/d1cc04534b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A practical method for the dibromination of alkenes without using molecular bromine is consistently appealing in organic synthesis. Herein, we report Mn-catalyzed dibrominated addition and substitution of alkenes only with N-bromosuccinimide, producing a variety of synthetically valuable dibrominated compounds in moderate to high yields.
Collapse
Affiliation(s)
- Xianheng Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shanshui Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Hong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| |
Collapse
|
16
|
Wang HZ, Li JZ, Guo Z, Zheng H, Wei WT. Visible-Light-Catalyzed N-Radical-Enabled Cyclization of Alkenes for the Synthesis of Five-Membered N-Heterocycles. CHEMSUSCHEM 2021; 14:4658-4670. [PMID: 34402206 DOI: 10.1002/cssc.202101586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Five-membered N-heterocycles play an important role in organic synthesis and material chemistry, as they are widespread through pharmaceutical molecules and natural products. Chemists have developed many synthetic strategies for constructing five-membered N-heterocycles from N-centered radicals, but the availability of mild and green methods for these transformations is still limited. The cyclization of visible-light-generated N-centered radicals with alkenes has emerged as a powerful tool to enable these chemical transformations in recent years. Through chosen representative examples, the significant developments in this promising field were outlined, including the selection of catalysts, substrate scope, mechanistic understanding (especially density functional theory calculations), and applications. The contents of this Minireview are categorized by intramolecular cyclization and intermolecular N-centered radical addition/cyclization reactions.
Collapse
Affiliation(s)
- Hui-Zhi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Jiao-Zhe Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
17
|
Jiang YM, Yu Y, Wu SF, Yan H, Yuan Y, Ye KY. Electrochemical fluorosulfonylation of styrenes. Chem Commun (Camb) 2021; 57:11481-11484. [PMID: 34667999 DOI: 10.1039/d1cc04813a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An environmentally friendly and efficient electrochemical fluorosulfonylation of styrenes has been developed. With the use of sulfonylhydrazides and triethylamine trihydrofluoride, a diverse array of β-fluorosulfones could be readily obtained. This reaction features mild conditions and a broad substrate scope, which could also be conveniently extended to a gram-scale preparation.
Collapse
Affiliation(s)
- Yi-Min Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Shao-Fen Wu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hong Yan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China. .,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Takagi R, Duong DT. Computational study on N-triflylphosphoramide-catalyzed enantioselective hydroamination of alkenyl thiourea. Org Biomol Chem 2021; 19:8806-8811. [PMID: 34569576 DOI: 10.1039/d1ob01672e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism of the enantioselective intramolecular hydroamination of alkenyl thiourea catalyzed by chiral binaphthol N-triflylphosphoramide (NPTA) was investigated using density functional theory calculations. This study reveals the details of the hydrogen bonding mode between NPTA and the substrate and indicates the importance of the dual hydrogen binding properties of the thiourea moiety for the reactivity and stereoselectivity of the hydroamination.
Collapse
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Duyen Thi Duong
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
19
|
Xue Y, Shi L, Wang X, Yu X, Zhu X, Hao XQ, Song MP. Regioselective N-F and α C(sp 3)-H Arylation of Aliphatic N-Fluorosulfonamides with Imidazopyridines. Org Lett 2021; 23:6807-6812. [PMID: 34406015 DOI: 10.1021/acs.orglett.1c02381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A regioselective arylation of aliphatic N-fluorosulfonamides with imidazopyridines enabled by breaking of N-F and α C(sp3)-H bond to form C-N and C-C bonds was described. With CuCl as the catalyst, a radical mechanism was proposed to produce N-arylated aliphatic sulfonamides via a N radical intermediate. Importantly, under acidic conditions, an in situ generated imine was the possible intermediate, which was trapped by imidazopyridines to form α C(sp3)-H arylated aliphatic sulfonamides. The current protocol featured a broad substrate scope, tunable reaction conditions, operational convenience, and good regioselectivity.
Collapse
Affiliation(s)
- Yuting Xue
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xu Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xiaoni Yu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
20
|
Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes. Catalysts 2021. [DOI: 10.3390/catal11060674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review summarizes the most noteworthy achievements in the field of C–O and C–N bond formation by hydroalkoxylation and hydroamination reactions on unactivated alkenes (including 1,2- and 1,3-dienes) promoted by earth-abundant 3d transition metal catalysts based on manganese, iron, cobalt, nickel, copper and zinc. The relevant literature from 2012 until early 2021 has been covered.
Collapse
|
21
|
Liu XG, Dong CS, Li F, Zhang B. Manganese-Mediated Direct Functionalization of Hantzsch Esters with Alkyl Iodides via an Aromatization-Dearomatization Strategy. Org Lett 2021; 23:4002-4007. [PMID: 33978430 DOI: 10.1021/acs.orglett.1c01210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report, for the first time, manganese-mediated direct functionalization of the Hantzsch esters with readily accessible alkyl iodides through an aromatization-dearomatization strategy. Applying this protocol, a library of valuable 4-alkyl-1,4-dihydropyridines were facilely afforded in good yields. This simple and practical reaction proceeds under visible-light irradiation at room temperature and displays high functional-group compatibility. Additionally, the method is applicable for gram-scale synthesis and late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Xian-Guan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ci-Shuang Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
22
|
Guo P, Han JF, Yuan GC, Chen L, Liao JB, Ye KY. Cobalt-Catalyzed Divergent Aminofluorination and Diamination of Styrenes with N-Fluorosulfonamides. Org Lett 2021; 23:4067-4071. [PMID: 33970648 DOI: 10.1021/acs.orglett.1c01308] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A cobalt-catalyzed aminofluorination reaction of styrenes with N-fluorosulfonamides serving as both the amination and fluorination agents has been developed. The switch of selectivity in this catalytic reaction from aminofluorination to diamination could be easily achieved by the addition of 1.0 equiv of PPh3. Both transformations tolerated a wide array of substrates under mild reaction conditions.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jun-Fa Han
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Lin Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jia-Bin Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
23
|
Zheng L, Qian YE, Hu YZ, Xiao JA, Ye ZP, Chen K, Xiang HY, Chen XQ, Yang H. O-Perhalopyridin-4-yl Hydroxylamines: Amidyl-Radical Generation Scaffolds in Photoinduced Direct Amination of Heterocycles. Org Lett 2021; 23:1643-1647. [PMID: 33587645 DOI: 10.1021/acs.orglett.1c00064] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reported herein is the design and synthesis of new O-perhalopyridin-4-yl hydroxylamines as shelf-stable and versatile amidyl-radical precursors. The novel amination reagents can be easily prepared via a single synthetic step from inexpensive commercially available starting materials using monoprotected HONH2 as amino source. The synthetic potency of the developed reagents was well demonstrated by direct amination of a series of quinoxalin-2(1H)-ones and their analogues under photocatalytic conditions, even without any additive and photocatalysts.
Collapse
Affiliation(s)
- Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, Guangxi, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
24
|
He FS, Zhang M, Zhang M, Luo X, Wu J. Iminyl radical initiated sulfonylation of alkenes with rongalite under photoredox conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00556a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A photoredox-catalyzed reaction of oximes, rongalite and electrophiles is accomplished, affording pyrrole-substituted aliphatic sulfones or sulfonamides in moderate to good yields.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Man Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Mengke Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Xiangxiang Luo
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|