1
|
Thakur SD, Gupta S, Dey S, Kundu S. Reusable CuO NPs Catalyzed Chemodivergent Transfer Hydrogenation of Azoarenes to Hydrazoarenes and Aniline Derivatives. Chemistry 2025; 31:e202404196. [PMID: 40072227 DOI: 10.1002/chem.202404196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
The selective synthesis of different products from a substrate employing a single catalyst by altering the reaction conditions is challenging. Herein, easy-to-synthesize and cheap CuO NPs catalyzed chemodivergent transfer hydrogenation (TH) of azoarenes to hydrazoarenes and aniline derivatives using ammonia borane (AB) under mild conditions is disclosed. The practical applicability of the protocol was demonstrated by the gram-scale synthesis of hydrazo and aniline derivatives as well as by the reduction of a few commercially used dyes such as methyl red, sudan I, sudan III and solvent yellow 7. Several control experiments and deuterium labelling experiments were performed to understand the reaction mechanism. Moreover, the catalyst can be recycled up to six times without considerable loss of catalytic activity.
Collapse
Affiliation(s)
- Seema D Thakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Shivangi Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Sadhan Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| |
Collapse
|
2
|
Yao Z, Li P, Chen F, Nie J, Wang H, Tang L, Yang Y. Halogen bonding accelerated aerobic dehydrogenative aromatization for 4-aminoquinoline preparation. Org Biomol Chem 2025; 23:728-733. [PMID: 39623914 DOI: 10.1039/d4ob01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study presents a highly efficient method for 4-aminoquinoline derivative preparation under transition metal-free conditions. The process involves an aerobic oxidative dehydrative coupling of 2,3-dihydroquinolin-4(1H)-ones with various amines, including ammonia, resulting in high yields of the desired products. The method is also applicable to substituted 4-aminoquinoline derivative construction through a cyclization/dehydrative coupling cascade process starting from 2'-amino chalcones. Mechanistic studies reveal that iodine (I2) is consumed to produce 3-iodoquinolin-4-ol, which acts as a true catalyst with high catalytic efficacy (as low as 0.5 mol%). The presence of halogen bonding is critical in the inter-molecular transfer hydrogenation process to generate inactive quinolin-4-ol. Subsequently, using air/oxygen as the terminal oxidant, the iodine anion was oxidized to I2 to regenerate the 3-iodoquinolin-4-ol from quinolin-4-ol in the catalytic cycle. Key benefits of this methodology include its simplicity, transition metal-free conditions, environmentally-benign oxidant, and high atom economy, making it a valuable approach for synthesizing medicinally significant 4-aminoquinoline derivatives.
Collapse
Affiliation(s)
- Zikun Yao
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Pan Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Fei Chen
- The People's Hospital of Xishui, 564600 Xishui, P. R. China
| | - Jiuwei Nie
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Hui Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Yuanyong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| |
Collapse
|
3
|
Sarmah D, Choudhury A, Bora U. Palladium nanoparticle catalyzed synthesis of indoles via intramolecular Heck cyclisation. Org Biomol Chem 2024; 22:6419-6431. [PMID: 39069947 DOI: 10.1039/d4ob01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A system utilizing palladium(II)-PEG has been devised for the intramolecular Heck cyclization of N-vinyl and N-allyl-2-haloanilines. The synthesis of a variety of indoles, including 2,3-diester substituted ones and 3-methyl indoles, has been accomplished using this catalytic system. The N-vinyl starting materials are obtained by the aza-Michael addition of 2-haloanilines with alkynecarboxylate esters, which, upon cyclization, yield ester-substituted indoles. Conversely, N-allyl-2-haloanilines yield 3-methylated indoles as the major products. The high activity of the system is owed to the in situ generation of Pd nanoparticles.
Collapse
Affiliation(s)
- Debasish Sarmah
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
- Department of Chemistry, Dakshin Kamup College, Mirza, Kamrup, Assam, India
| | - Anup Choudhury
- Department of Chemistry, Handique Girls' College, Guwahati, Assam, India
| | - Utpal Bora
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
| |
Collapse
|
4
|
Miki K, Maeda K, Matsubara R, Hayashi M. Synthesis of 2-(Pyridin-2-yl)phenols and 2-(Pyridin-2-yl)anilines. J Org Chem 2024; 89:5797-5810. [PMID: 38563078 DOI: 10.1021/acs.joc.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, we report a new synthetic strategy for 2-(pyridin-2-yl)phenols and 2-(pyridin-2-yl)anilines catalyzed by a Pd/C-ethylene system. The starting materials, 2-(pyridin-2-yl)cyclohexan-1-ones, can be easily prepared by the reaction of substituted pyridine N-oxide and cyclohexanones. The most useful feature of this method is that both 2-(pyridin-2-yl)phenols and 2-(pyridin-2-yl)anilines are easily synthesized independently using the same compound as a starting material, simply by adding or not adding a nitrogen source.
Collapse
Affiliation(s)
- Keigo Miki
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Katsumi Maeda
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Lin H, Pan Y, Fu J, Yi Y, Tang H, Pan Y, Yu W, Wang X. Palladium-Catalyzed Tandem C(sp 3)-H Insertion Cyclization of 2-(2-Vinylarene)acetonitriles with Isocyanides to Access Naphthalen-2-amines. J Org Chem 2023; 88:12409-12420. [PMID: 37578069 DOI: 10.1021/acs.joc.3c01142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A Pd-catalyzed cyclization reaction of 2-(2-vinylarene)acetonitriles and isocyanides has been documented. Various naphthalen-2-amines were obtained in moderate to good yields under mild conditions. The in vitro cytotoxicity of all products was evaluated by MTT assay against seven human cancer cell lines. The results indicated that compounds 3ea, 3ma, and 3ob exhibited effective anticancer activities against the tested cancer cells.
Collapse
Affiliation(s)
- Huishu Lin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Yongzhou Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, P. R. China
| | - Jinping Fu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Haitao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, P. R. China
| | - Yingming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, P. R. China
| | - Wanguo Yu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
| | - Xu Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
6
|
Dey S, Panja D, Sau A, Thakur SD, Kundu S. Reusable Cobalt-Catalyzed Selective Transfer Hydrogenation of Azoarenes and Nitroarenes. J Org Chem 2023. [PMID: 37390049 DOI: 10.1021/acs.joc.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Herein, control transfer hydrogenation (TH) of azoarenes to hydrazo compounds is established employing easy-to-synthesize reusable cobalt catalyst using lower amounts of N2H4·H2O under mild conditions. With this effective methodology, a library of symmetrical and unsymmetrical azoarene derivatives was successfully converted to their corresponding hydrazo derivatives. Further, this protocol was extended to the TH of nitroarenes to amines with good-to-excellent yields. Several kinetic studies along with Hammett studies were carried out to understand the plausible mechanism and the electronic effects in this transformation. This inexpensive catalyst can be recycled up to five times without considerable loss of catalytic activity.
Collapse
Affiliation(s)
- Sadhan Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Dibyajyoti Panja
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anirban Sau
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Seema D Thakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
7
|
Kuang Y, Maeda K, Matsubara R, Hayashi M. One-Pot Synthesis of 3-Substiuted Indoles from 2-(2-Nitro-1-phenylethyl)cyclohexanone Derivatives. J Org Chem 2023; 88:5791-5800. [PMID: 37023265 DOI: 10.1021/acs.joc.3c00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Herein, a one-pot synthesis of 3-substituted indoles from 2-(2-nitro-1-phenylethyl)cyclohexanone derivatives catalyzed by Pd/C is reported. The starting materials can be easily prepared by the reaction of substituted ketones and nitroalkenes. The facile experimental procedure comprises the treatment of 2-(2-nitro-1-phenylethyl)cyclohexanone derivatives with H2 as a hydrogen donor in the presence of 10 mol % Pd/C. Subsequently, the exchange of H2 with CH2═CH2 as a hydrogen acceptor affords a variety of 3-substituted indoles in high yields. The formation of intermediate nitrones is essential for a smooth reaction.
Collapse
Affiliation(s)
- Yangjin Kuang
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Katsumi Maeda
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Yescas-Galicia D, Restrepo-Osorio RA, García-González AN, Hernández-Benítez RI, Espinoza-Hicks JC, Escalante CH, Barrera E, Santoyo BM, Delgado F, Tamariz J. Divergent Pd-catalyzed Functionalization of 4-Oxazolin-2-ones and 4-Methylene-2-oxazolidinones and Synthesis of Heterocyclic-Fused Indoles. J Org Chem 2022; 87:13034-13052. [PMID: 36153994 DOI: 10.1021/acs.joc.2c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Palladium-catalyzed functionalization was presently performed on two building blocks: 4-oxazolin-2-ones and 4-methylene-2-oxazolidinones. Direct Heck arylation of 4-oxazolin-2-ones led to a series of 5-aryl-4-oxazolin-2-ones, including analogues with N-chiral auxiliary, in an almost quantitative yield. The Pd(II)-catalyzed homocoupling reaction of 4-oxazolin-2-ones provided novel heterocyclic across-ring dienes. Meanwhile, the intramolecular cross-coupling of N-aryl-4-methylene-2-oxazolidinones furnished a series of oxazolo[3,4-a]indol-3-ones. Further functionalization of 4-methylene-2-oxazolidinones afforded substituted indoles and heterocyclic-fused indoles with aryl, bromo, carbinol, formyl, and vinyl groups. A computational study was carried out to account for the behavior of the formylated derivatives. The currently developed methodology was applied to a new formal total synthesis of ellipticine.
Collapse
Affiliation(s)
- Daniel Yescas-Galicia
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Rodrigo A Restrepo-Osorio
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Ailyn N García-González
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Roberto I Hernández-Benítez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - José C Espinoza-Hicks
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, 31000 Chihuahua, Chih., Mexico
| | - Carlos H Escalante
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Edson Barrera
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Blanca M Santoyo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Francisco Delgado
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| |
Collapse
|
9
|
Mikhalyonok SG, Kuz’menok NM, Bezborodov VS, Arol AS. Synthesis of 1,2,6-trisubstituted indoles from 6-propargylcyclohex-2-enones and primary amines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Taskesenligil Y, Aslan M, Cogurcu T, Saracoglu N. Directed C-H Functionalization of C3-Aldehyde, Ketone, and Acid/Ester-Substituted Free (NH) Indoles with Iodoarenes via a Palladium Catalyst System. J Org Chem 2022; 88:1299-1318. [PMID: 35609297 PMCID: PMC9903333 DOI: 10.1021/acs.joc.2c00716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pd(II)-catalyzed C-H arylations of free (NH) indoles including different carbonyl directing groups on C3-position with aryl iodides are demonstrated. Importantly, the reactions are carried out using the same catalyst system without any additional transient directing group (TDG). In this study, the formyl group as a directing group gave the C4-arylated indoles versus C2-arylation. Using this catalyst system, C-H functionalization of 3-acetylindoles provided domino C4-arylation/3,2-carbonyl migration products. This transformation involves the unusual migration of the acetyl group to the C2-position following C4-arylation in one pot. Meanwhile, migration of the acetyl group could be simply controlled and N-protected 3-acetylindoles afforded C4-arylation products without migration of the acetyl group. Functionalization of indole-3-carboxylic acid (or methyl ester) with aryl iodides using the present Pd(II)-catalyst system resulted in decarboxylation followed by the formation of C2-arylated indoles. Based on the control experiments and the literature, plausible mechanisms are proposed. The synthetic utilities of these acetylindole derivatives have also been demonstrated. Remarkably, C4-arylated acetylindoles have allowed the construction of functionalized pityiacitrin (a natural product).
Collapse
|
11
|
Wang S, Jiang P, Li R, Yang M, Deng G. Progress in Selective Construction of Functional Aromatics with Cyclohexanone. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Govindan K, Chen NQ, Chuang YW, Lin WY. Unlocking Amides through Selective C-N Bond Cleavage: Allyl Bromide-Mediated Divergent Synthesis of Nitrogen-Containing Functional Groups. Org Lett 2021; 23:9419-9424. [PMID: 34784227 DOI: 10.1021/acs.orglett.1c03541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a new set of reactions based on the unlocking of amides through simple treatment with allyl bromide, creating a common platform for accessing a diverse range of nitrogen-containing functional groups such as primary amides, sulfonamides, primary amines, N-acyl compounds (esters, thioesters, amides), and N-sulfonyl esters. The method has potential industrial applicability, as demonstrated through gram-scale syntheses in batch and in a continuous flow system.
Collapse
Affiliation(s)
- Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Yu-Wei Chuang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
13
|
Amira G, Salma S, Wahiba G, Taoufik B. Nucleophilicities of para‐substituted aniline radical cations in acetonitrile: Kinetic investigation and structure–reactivity relationships. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ghabi Amira
- Laboratoire de Chimie Hétérocyclique Produits Naturels et Réactivité (LR11ES39) Faculté des Sciences Université de Monastir Monastir Tunisia
| | - Souissi Salma
- Laboratoire de Chimie Hétérocyclique Produits Naturels et Réactivité (LR11ES39) Faculté des Sciences Université de Monastir Monastir Tunisia
| | - Gabsi Wahiba
- Chemistry Department, College of Sciences and Arts, Jouf University Algrayat Saudi Arabia
| | - Boubaker Taoufik
- Laboratoire de Chimie Hétérocyclique Produits Naturels et Réactivité (LR11ES39) Faculté des Sciences Université de Monastir Monastir Tunisia
| |
Collapse
|
14
|
Caldora HP, Govaerts S, Leonori D, Dighe SU, Turner OJ. A de novo Synthesis of Oxindoles from Cyclohexanone-Derived γ-Keto-Ester Acceptors Using a Desaturative Amination–Cyclization Approach. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1538-8429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractHere we report a desaturative approach for oxindole synthesis. This method uses simple ethyl 2-(2-oxocyclohexyl)acetates and primary amine building blocks as coupling partners. A dual photoredox–cobalt manifold is used to generate a secondary aniline that, upon heating, cyclizes with the pendent ester functionality. The process operates under mild conditions and was applied to the modification of several amino acids, the blockbuster drug mexiletine, as well as the formation of dihydroquinolinones.
Collapse
|