1
|
Peng S, Su T, Yang X, Li JJ, Wan J, Ni HL, Cao P, Hu P, Wang BQ, Chen B. Rhodium-catalyzed isomerization of homoallylic alcohols with a tethered carbonyl group: pathway to 1,6-diketones. Org Biomol Chem 2025. [PMID: 40366315 DOI: 10.1039/d5ob00473j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Herein, we report a rhodium-catalyzed isomerization of homoallylic alcohols with a tethered carbonyl group to synthesize structurally diverse unsymmetrical 1,6-diketones with atom, step, and redox economy. By introducing chiral ligands, good enantioselective isomerization products can be obtained. The utility of this reaction was also demonstrated with diverse transformations.
Collapse
Affiliation(s)
- Shuang Peng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Tong Su
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Xuan Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Jia-Jie Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Jie Wan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| |
Collapse
|
2
|
Xu G, Guan P, Deng L, Wang C, Ma D, Meng Y, Fang Z, Duan J, Guo K. Dialkylation of 1,3-Dienes with Aldehydes and Cyclopropanols toward Homoallylic Alcohols by Dual Photoredox and Chromium Catalysis. Org Lett 2025; 27:4682-4687. [PMID: 40289577 DOI: 10.1021/acs.orglett.5c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
A visible-light-induced three-component coupling of aldehydes, 1,3-dienes, and cyclopropyl alcohols using dual photoredox and chromium catalysis is herein described. This efficient protocol achieves the dialkylation of 1,3-dienes toward 1,4-disubstituted homoallylic alcohols in moderate to good yields with excellent regioselectivity, featuring mild reaction conditions, good functional group tolerance, and gram-scale synthesis. Mechanistic study suggests that photoinduced sequential ring opening of cyclopropyl alcohol and radical and nucleophilic cascade addition are involved in the catalytic cycle.
Collapse
Affiliation(s)
- Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pei Guan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Longyu Deng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Caipeng Wang
- Shandong Yanggu Huatai Chemical Company, Ltd., Liaocheng 252300, China
| | - Delong Ma
- Shandong Yanggu Huatai Chemical Company, Ltd., Liaocheng 252300, China
| | - Yan Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Liu Y, Feng A, Zhu R, Zhang D. New insights into the mechanism of synergetic photoredox/copper(i)-catalyzed carbocyanation of 1,3-dienes: a DFT study. Chem Sci 2023; 14:4580-4588. [PMID: 37152251 PMCID: PMC10155915 DOI: 10.1039/d3sc00002h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
This work presents a DFT-based computational study to understand the mechanism, and regio- and enantioselectivities in the synergetic photoredox/copper(i)-catalyzed carbocyanation of 1,3-dienes with alkyl redox-active esters. The calculated results show an unprecedented copper catalytic mechanism, where the reaction follows a catalytic cycle involving CuI-only catalysis, instead of a Cu(i)/Cu(ii)/Cu(iii)/Cu(i) cycle as proposed in the experimental study. Moreover, it is found that the critical step involves the reaction of the cyanocopper(i) species with an allyl cation rather than the cyanocopper(ii) species reacting with an allyl radical as proposed in the experiment, and that the photocatalyst is regenerated via single electron transfer from the allyl radical to the oxidized photocatalyst. In the newly proposed photoredox/copper(i) catalysis, the reaction consists of four stages: (i) generation of the copper(i) active catalyst, (ii) formation of an allyl radical with oxidative quenching of the photoexcited species, (iii) generation of an allylcopper complex accompanied by the regeneration of the photocatalyst, and (iv) formation of the allyl cyanide product with the regeneration of the copper(i) active catalyst. The cyanation of the allyl cation is calculated to be the regio- and enantioselectivity-determining step. The excellent regio- and stereoselectivities are attributed to the favorable CH-π interaction between the substrate and catalyst as well as the small distortion of the substrate.
Collapse
Affiliation(s)
- Yanhong Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 P. R. China
| | - Aili Feng
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Rongxiu Zhu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| |
Collapse
|
4
|
Liu SN, Liu JB, Huang F, Wang WJ, Wang Q, Yang C, Sun QM, Chen DZ. Origins of Stereospecificity and Divergent Reactivity of Pd-Catalyzed Cross Coupling with α,α-Disubstituted Alkenyl Hydrazones. J Org Chem 2022; 87:15608-15617. [PMID: 36321171 DOI: 10.1021/acs.joc.2c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article presents an exploration of stereospecificity and divergent reactivity of Pd-catalyzed α,α-disubstituted alkenyl hydrazones to synthesize 1,4-dienes in the Z configuration and vinylcyclopropane. We calculated the energy profiles of four α,α-disubstituted alkenyl hydrazones. The results show that the energy profiles of the whole catalytic cycle are basically the same before the syn-carbopalladation step. Subsequent syn-β-C elimination yields skipping dienes, or direct β-H elimination yields vinylcyclopropane. Current theoretical calculations reveal that the stereospecificity and the divergent reactivity of reactions result from the competition between syn-β-C elimination and β-H elimination. The C-C bond rotation and subsequent syn-β-C elimination step control the stereospecificity of the reaction by changing the olefin stereostructure from E to Z configuration. The steric factor of α-substituted groups mediates the transformation between syn-β-C elimination and β-H elimination. The results are of great significance for the scientific design of substrates to achieve accurate synthesis of target products.
Collapse
Affiliation(s)
- Sheng-Nan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Chong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qing-Min Sun
- Shandong Kaisheng New Materials Co., Ltd., Zibo 255185, P. R. China
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
5
|
Noba N, Munakata M, Mori T, Kimura M. CO2‐Assisted Stereocontrolled Multi‐component Coupling. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nao Noba
- Fukushima Kogyo Koto Senmon Gakko Department of Applied Chemistry and Biochemistry JAPAN
| | - Miho Munakata
- Fukushima Kogyo Koto Senmon Gakko Department of Applied Chemistry and Biochemistry JAPAN
| | - Takamichi Mori
- Fukushima Kogyo Koto Senmon Gakko Department of Applied Chemistry and Biochemistry JAPAN
| | - Masanari Kimura
- Nagasaki University Graduate School of Engineering Bunkyo 1-14 852-8521 Nagasaki JAPAN
| |
Collapse
|
6
|
Qi YQ, Liu S, Xu Y, Li Y, Su T, Ni HL, Gao Y, Yu W, Cao P, Hu P, Zhao KQ, Wang BQ, Chen B. Nickel-Catalyzed Three-Component Cross-Electrophile Coupling of 1,3-Dienes with Aldehydes and Aryl Bromides. Org Lett 2022; 24:5023-5028. [PMID: 35822901 DOI: 10.1021/acs.orglett.2c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We herein report a Ni-catalyzed three-component cross-electrophile coupling of 1,3-dienes with aldehydes and aryl bromides using manganese metal as the reducing agent. This efficient protocol accomplishes dicarbofunctionalization of 1,3-dienes to synthesize diverse structural 1,4-disubstituted homoallylic alcohols by forming two new C-C bonds in one time. Mechanistic study suggests that an allyl-nickel(I) species is involved in the catalytic cycle.
Collapse
Affiliation(s)
- Ya-Qiong Qi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Shuai Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Yan Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Yang Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Tong Su
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| |
Collapse
|
7
|
Pradhan TR, Paudel M, Feoktistova T, Cheong PHY, Park JK. Silaborative Assembly of Allenamides and Alkynes: Highly Regio- and Stereocontrolled Access to Bi- or Trimetallic Skipped Dienes. Angew Chem Int Ed Engl 2022; 61:e202116154. [PMID: 35142019 DOI: 10.1002/anie.202116154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/16/2022]
Abstract
A highly stereo- and regiocontrolled multicomponent approach to skipped 1,4-dienes decorated with one boryl and two silyl functionalities is described. This Pd-catalyzed atom-economical union of allenamides, alkynes, and Me2 PhSiBpin (or Et3 SiBpin) proceeds without the use of phosphine ligands, instead relying on chelation through the internal amide group of the allenamide sulfonyl. A variety of alkynes, including those derived from complex bioactive molecules, can be efficiently coupled with allenamides and Me2 PhSiBpin in good yields and with excellent selectivity. The synthetic potential was demonstrated through multiple valuable chemoselective transformations, establishing new disconnections for functionalized dienes. Density functional theory calculations revealed that the reaction first proceeded through borylation of the allenamide, followed by silylation of the alkyne and then reductive elimination, which convergently assemble the skipped 1,4-diene.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Mukti Paudel
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | | | | | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
8
|
Sato T. Development of Stereodivergent Synthesis of Skipped Dienes and Application to Unified Total Synthesis of Madangamine Alkaloids. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| |
Collapse
|
9
|
Bai P, Jiang Y, Xiao T, Qin G. A Single‐Step Synthesis of Stereodefined Skipped Trienes: Pd‐Catalyzed Cascade Reaction of Terminal Alkynes with Allylic Halides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peizhi Bai
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Yubo Jiang
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Tiebo Xiao
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Guiping Qin
- Kunming University of Science and Technology Faculty of Science 727 South Jingming Road, Chenggong District, Kunming 650500 Kunming CHINA
| |
Collapse
|
10
|
Pradhan TR, Paudel M, Feoktistova T, Cheong PH, Park JK. Silaborative Assembly of Allenamides and Alkynes: Highly Regio‐ and Stereocontrolled Access to Bi‐ or Trimetallic Skipped Dienes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tapas R. Pradhan
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | - Mukti Paudel
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | | | | | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|
11
|
Ritchie NFC, Zahara AJ, Wilkerson-Hill SM. Divergent Reactivity of α,α-Disubstituted Alkenyl Hydrazones: Bench Stable Cyclopropylcarbinyl Equivalents. J Am Chem Soc 2022; 144:2101-2106. [PMID: 35086332 DOI: 10.1021/jacs.1c12881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein we report the divergent reactivity of 2,2-dialkyl-3-(E)-alkenyl N-tosylhydrazones using Pd-catalyzed cross-coupling conditions, which enable the Z-selective synthesis of 3-aryl-1,4-dienes and gem-dialkyl vinylcyclopropanes. We found that the dialkylbiaryl phosphine ligand SPhos was the optimal ligand for this transformation producing skipped dienes in up to 83% isolated yield. The ratio of skipped diene to vinylcyclopropane is dependent on both the structure of the α,α-disubstituted hydrazones and the aryl halide partner. Using sterically encumbered aryl bromides provided the trans-cyclopropane products selectively in up to 69% yield. The reaction is stereospecific and stereoselective and occurs alongside a competing 1,2-alkenyl group migration pathway.
Collapse
Affiliation(s)
- Nina F C Ritchie
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adam J Zahara
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
12
|
Zhang Y, Wang H, Mao Y, Shi S. Ni-Catalyzed Three-Component Coupling Reaction of Butadiene,Aldimines and Alkenylboronic Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Liu XY, Tian SY, Jiang YF, Rao W, Wang SY. Visible-Light-Triggered Sulfonylation/Aryl Migration/Desulfonylation and C-S/Se Bond Formation Reaction: 1,2,4-Trifunctionalization of Butenyl Benzothiazole Sulfone with Thiosulfonate/Selenosulfonates. Org Lett 2021; 23:8246-8251. [PMID: 34652929 DOI: 10.1021/acs.orglett.1c02981] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A visible-light-triggered radical cascade sulfonylation/aryl migration/desulfonylation and C-S/Se bond formation reaction of butenyl benzothiazole sulfone with thiosulfonates or selenosulfonates is developed. This study affords the 1,2,4-trifunctionalization of butenyl benzothiazole sulfone derivatives under mild conditions.
Collapse
Affiliation(s)
- Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shi-Yin Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Sato T, Suto T, Nagashima Y, Mukai S, Chida N. Total Synthesis of Skipped Diene Natural Products. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takahiro Suto
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yoshiyuki Nagashima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Shori Mukai
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
15
|
Li YQ, Shi SL. Ni-Catalyzed Coupling of Butadiene, Aldimines, and Arylboronic Acids to Homoallylic Amines under Base-Free Conditions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yu-Qing Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Bernardo O, Yamamoto K, Fernández I, López LA. Reactivity of Stabilized Vinyldiazo Compounds toward Alkenyl- and Alkynylsilanes under Gold Catalysis: Regio- and Stereoselective Synthesis of Skipped Dienes and Enynes. Org Lett 2021; 23:4452-4456. [PMID: 33983038 PMCID: PMC8900156 DOI: 10.1021/acs.orglett.1c01381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We report the gold-catalyzed reaction
of vinyldiazo compounds and
alkenylsilanes to produce skipped dienes, which are common structural
motifs in an array of bioactive compounds. This carbon–carbon
bond-forming transformation proceeds with complete regio- and stereoselectivity
with the silyl group serving as a regio- and stereocontrolling element.
Likewise, the use of alkynylsilanes as reaction partners yielded skipped
enynes resulting from a C(sp)–C(sp3) coupling. Mechanistic
experiments and DFT studies have provided support for a stepwise mechanism.
Collapse
Affiliation(s)
- Olaya Bernardo
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain
| | - Kota Yamamoto
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Luis A López
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain
| |
Collapse
|
17
|
Zhang GM, Zhang H, Wang B, Wang JY. Boron-catalyzed dehydrative allylation of 1,3-diketones and β-ketone esters with 1,3-diarylallyl alcohols in water. RSC Adv 2021; 11:17025-17031. [PMID: 35479693 PMCID: PMC9031380 DOI: 10.1039/d1ra01922h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
A metal-free catalytic allylation with atom economy and green environment friendly was developed. Allylic alcohols could be directly dehydrated in water by B(C6F5)3, without using any base additives. The reaction can afford the corresponding monoallylated product in moderate to high yield and has been performed on a gram-scale, and a quaternary carbon center can be constructed for the active methine compounds of 1,3-diketones or β-ketone esters in this process. The product can be further converted, such as the synthesis of tetra-substituted pyrazole compounds, or 1,4-dienes and functionalized dihydropyrans.
Collapse
Affiliation(s)
- Guo-Min Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hua Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ji-Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
18
|
Li YQ, Chen G, Shi SL. Regio- and Trans-Selective Ni-Catalyzed Coupling of Butadiene, Carbonyls, and Arylboronic Acids to Homoallylic Alcohols under Base-Free Conditions. Org Lett 2021; 23:2571-2577. [PMID: 33661655 DOI: 10.1021/acs.orglett.1c00488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We herein report a Ni-catalyzed three-component coupling of 1,3-butadiene, carbonyl compounds, and arylboronic acids as a general synthetic approach to 1,4-disubstituted homoallylic alcohols, an important class of compounds, which have previously not been straightforward to access. The reaction occurs efficiently using a Ni(cod)2 catalyst without any external base and ligand at ambient temperature and allows a highly regioselective and trans-selective 1,4-dicarbofunctionalization of feedstock butadiene in a single operation. This simple and practical protocol could apply to a comprehensive scope of substrates. The neutral conditions show extraordinary tolerance for even highly base-sensitive functional groups.
Collapse
Affiliation(s)
- Yu-Qing Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guang Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
19
|
Li YQ, Shi SL. Nickel-Catalyzed Multicomponent Coupling of Butadiene, Aldehydes, Alkynes and Schwartz Reagent to Form 1,4-Dienes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|