1
|
Zavarise C, Cintrat JC, Romero E, Sallustrau A. Isocyanate-based multicomponent reactions. RSC Adv 2024; 14:39253-39267. [PMID: 39670166 PMCID: PMC11635408 DOI: 10.1039/d4ra04152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Since their discovery, multicomponent reactions have attracted significant attention due to their versatility and efficiency. This review aims to explore the latest advancements in isocyanate-based multicomponent reactions and the sophisticated chemical opportunities they present for generating molecules of interest. The added value of the methodologies described, supported by mechanism schemes, as well as scopes of application, will be discussed. These developments will be organised as the main accessible chemical functions and sorted according to their type of MCR (3, 4 or 5-MCR).
Collapse
Affiliation(s)
- Clara Zavarise
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| | - Jean-Christophe Cintrat
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| | - Eugénie Romero
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| | - Antoine Sallustrau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM Gif-sur-Yvette 91191 France
| |
Collapse
|
2
|
Wang X, Chen DP, Wang WP, Yang CH, Li M, Xu WB, Wang XC, Quan ZJ. Hydrazone Phosphaketene as a Synthetic Platform To Obtain Three Classes of 1,2,4-Diazaphosphol Derivatives by Switchable Chemoselectivity Strategies. Org Lett 2024; 26:3575-3580. [PMID: 38636450 DOI: 10.1021/acs.orglett.4c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We introduce switchable chemoselectivity strategies based on the hydrazone phosphaketene intermediate to synthesize three classes of 1,2,4-diazaphosphol derivatives. First, the five-membered heterocyclic P and O anion intermediates acted as nucleophilic agents in the selective construction of C-P and C-O bonds. Second, the phosphinidene served as a phosphorus synthon, allowing for the formation of C-P and C-N bonds. Finally, a stepwise mechanism, supported by DFT calculations, was invoked to explain the reaction selectivity.
Collapse
Affiliation(s)
- Xin Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Ping Chen
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Wen-Peng Wang
- School of Chemical Engineering, Lanzhou City University, Lanzhou 730070, P. R. China
| | - Chun-Hong Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Ming Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Wen-Bo Xu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| |
Collapse
|
3
|
Zhu Y, Bo F, Wang X, Jiang Q, Li Q, Han Z, Wang YN, Qi G. Construction of 1,3,4-oxadiazolines bearing CF 3-quaternary centers via amino-assisted [3 + 2] cycloadditions. Org Biomol Chem 2024; 22:1391-1394. [PMID: 38284244 DOI: 10.1039/d3ob02096g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
An amino-assisted [3 + 2] cycloaddition strategy of nitrile imines with o-aminotrifluoroacetophenones has been explored, thus providing functionalized 1,3,4-oxadiazolines bearing CF3-quaternary centers in good to excellent yields in the presence of K2CO3 under mild conditions. The amino groups located at the ortho-position of trifluoroacetophenone might play a crucial role in the present cyclization. The MTT assay shows that the 1,3,4-oxadiazoline derivatives could be potential candidates for the treatment of head and neck cancers.
Collapse
Affiliation(s)
- Yannan Zhu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Fang Bo
- Yancheng Tongwei Solar Energy Co., Ltd, Yancheng 224000, China.
| | - Xuying Wang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Qianxi Jiang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Qiuyun Li
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zhongfei Han
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yi-Ning Wang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Gang Qi
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
4
|
Li M, Li SX, Chen DP, Gao F, Qiu YF, Wang XC, Quan ZJ, Liang YM. Regioselective C-H Active Carbonylation via 1,4-Palladium Migration. Org Lett 2023; 25:2761-2766. [PMID: 37052909 DOI: 10.1021/acs.orglett.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We report a highly regioselective three-component coupling reaction of styrene, CO gas, and an amine compound to synthesize multisubstituted α,β-unsaturated amides, which involves a palladium-catalyzed sequential 1,4-palladium migration, C(sp2)-H activation, carbonylation, and amination. Salient features of this strategy include the use of 1 atm of CO, excellent stereochemistry, and good functional group tolerance. Further, a series of control experiments and density functional theory calculations were performed to afford some insights for the transfer mechanism.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shun-Xi Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Ping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Fan Gao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
5
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
6
|
Wei G, Zhang J, Wang H, Chen Z, Wu XF. Radical selenylative cyclization of trifluoromethyl propargyl imines for the synthesis of trifluoromethyl- and seleno-azaspiro[4,5]-tetraenones and quinolines. Org Biomol Chem 2023; 21:284-288. [PMID: 36484764 DOI: 10.1039/d2ob02033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A radical selenylative cyclization of trifluoromethyl propargyl imines with diselenides for the regiodivergent construction of diversely functionalized azaspiro[4,5]-tetraenones and quinolines has been developed, which enables dual incorporation of CF3 and Se groups into heterocycles in a one-pot reaction. When using Oxone as a green oxidant, the reaction proceeds through oxidative dearomative ipso-annulation or intramolecular ortho-annulation exhibiting good regioselectivity. The synthetic utility of this method is demonstrated by a scale-up reaction and further modification of the obtained products.
Collapse
Affiliation(s)
- Guangming Wei
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Haoyuan Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China. .,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany.
| |
Collapse
|
7
|
Yavari I, Golmoradi F, Khaledian O. Additive-Free Synthesis of 3H-1,2,4-Triazol-3-ones via a Formal [3+2] Cycloaddition Reaction of Hydrazonoyl Chlorides with KOCN. Synlett 2022. [DOI: 10.1055/s-0041-1738425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractA direct and speedy approach for the synthesis of 1,5-disubstitued-3H-1,2,4-triazol-3-ones via a formal [3+2] cycloaddition reaction of hydrazonoyl chlorides with KOCN is described. The reaction proceeds in EtOH at room temperature with no need for any base and catalyst. KCl is the sole byproduct of this efficient synthetic procedure which can be isolated after reaction completion using water in which the products precipitated.
Collapse
|
8
|
Xu Q, Jia J, Wu Y, Hu B, Xin J, Liu Y, Gao W, Li D. Ag 2O-Induced Regioselective Huisgen Cycloaddition for the Synthesis of Fully Substituted Pyrazoles as Potential Anticancer Agents. J Org Chem 2022; 87:14496-14506. [PMID: 36278313 DOI: 10.1021/acs.joc.2c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Efficient regioselective synthesis of novel fully substituted pyrazoles has been achieved through Huisgen cycloaddition reaction of δ-acetoxy allenoates with hydrazonoyl chlorides by the addition of Ag2O. The present approach offers the advantages of simpleness, high efficiency, mild conditions, wide substrate scope, and good-to-excellent regioselectivities. The strategy could be performed on a large-scale pattern to allow access to structurally versatile pyrazoles, of which a key intermediate of lonazolac (303), a nonsteroidal anti-inflammatory drug, could be synthesized efficiently. Moreover, several pyrazoles show obvious growth-inhibitory activity of Huh-7 cells, expected as potential anticancer agents.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jifan Jia
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuqing Wu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Bo Hu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiaqi Xin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yi Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
9
|
Convenient generation of 1,3-dipolar nitrilimines and [3 + 2] cycloaddition for the synthesis of spiro compounds. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Regioselective Synthesis of 5-Trifluoromethyl 1,2,4-Triazoles via [3 + 2]-Cycloaddition of Nitrile Imines with CF 3CN. Molecules 2022; 27:molecules27196568. [PMID: 36235104 PMCID: PMC9572902 DOI: 10.3390/molecules27196568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023] Open
Abstract
We herein describe a general approach to 5-trifluoromethyl 1,2,4-triazoles via the [3 + 2]-cycloaddition of nitrile imines generated in situ from hydrazonyl chloride with CF3CN, utilizing 2,2,2-trifluoroacetaldehyde O-(aryl)oxime as the precursor of trifluoroacetonitrile. Various functional groups, including alkyl-substituted hydrazonyl chloride, were tolerated during cycloaddition. Furthermore, the gram-scale synthesis and common downstream transformations proved the potential synthetic relevance of this developed methodology.
Collapse
|
11
|
Lu SN, Sun Y, Zhang J, Chen Z, Wu XF. Metal-free Synthesis of 5-Trifluoromethyl-1,2,4-triazoles via elemental sulfur promoted oxidative cyclization of trifluoroacetimidohydrazides with benzylic and aliphatic amines. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Zhang Q, Zhang S, Tang M. Method for Preparing N-Tosylhydrazonyl Chlorides. J Org Chem 2022; 87:6393-6396. [PMID: 35417162 DOI: 10.1021/acs.joc.2c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile and efficient method for preparing N-tosylhydrazonyl chlorides was developed. The reaction was general for a variety of substrates and displayed wonderful compatibility to diverse substituents. A range of N-tosylhydrazonyl chlorides was prepared for the first time.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Siyu Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Meng Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Wu XF, Chen Z, Liu L, zhang Y, Yang Z. Copper‐Catalyzed Decarbonylative Cyclization of Isatins and Trifluoroacetimidohydrazides for the Synthesis of 2‐(5‐Trifluoromethyl‐1,2,4‐triazol‐3‐yl)anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Zheng Y, Dong M, Qu E, Bai J, Wu XF, Li W. Pd-Catalyzed Carbonylative Synthesis of 4H-Benzo[d][1,3]Oxazin-4-Ones Using Benzene-1,3,5-Triyl Triformate as the CO Source. Chemistry 2021; 27:16219-16224. [PMID: 34529291 DOI: 10.1002/chem.202103137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 11/10/2022]
Abstract
A facile synthesis of 4H-benzo[d][1,3]oxazin-4-one derivatives by Pd-catalyzed carbonylative cross-coupling between N-(ortho-bromoaryl)amides and benzene-1,3,5-triyl triformate (TFBen) was developed. This procedure does not require the toxic and flammable gas CO as the carbonyl source and tolerates a wide scope of functional groups. Remarkably, 4H-benzo[d][1,3]oxazin-4-ones incorporated to natural products and drugs can be constructed by this method.
Collapse
Affiliation(s)
- Yan Zheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Mengke Dong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Erdong Qu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Jin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straβe 29a, 18059, Rostock, Germany
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| |
Collapse
|
15
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
16
|
Lu S, Yang H, Zhang J, Chen Z, Wu X. Oxidative Cyclization of Trifluoroacetimidohydrazides with D‐Glucose for the Metal‐Free Synthesis of 3‐Trifluoromethyl‐1,2,4‐Triazoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shu‐Ning Lu
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University 310018 Hangzhou People's Republic of China
| | - Hefei Yang
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University 310018 Hangzhou People's Republic of China
| | - Jiajun Zhang
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University 310018 Hangzhou People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University 310018 Hangzhou People's Republic of China
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning People's Republic of China
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
17
|
Yang H, Zhang J, Chen Z, Wu XF. TFBen (Benzene-1,3,5-triyl triformate): A Powerful and Versatile CO Surrogate. CHEM REC 2021; 22:e202100220. [PMID: 34591367 DOI: 10.1002/tcr.202100220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Carbonylative reactions by the using of CO surrogates constitute a facile avenue for the assembly of valuable carbonyl-containing compounds due to the colorless, toxic, flammable, and not easy-handing character of carbon monoxide gas. Recent advances in the carbonylative transformations with TFBen (benzene-1,3,5-triyl triformate) as a safe and convenient CO precursor are systematically summarized and discussed, which can be divided into three parts based on the patterns of the obtained products. This Review focuses on the discussion of the application of TFBen in carbonylative synthesis of various carbonyl-containing compounds.
Collapse
Affiliation(s)
- Hefei Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, People's Republic of China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
18
|
Zhang J, Tang J, Chen Z, Wu X. Synthesis of 5‐Trifluoromethyl‐1,2,4‐Triazoles via Metal‐Free Annulation of Trifluoroacetimidohydrazides and Methyl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Jianhua Tang
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 Liaoning People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
19
|
Du S, Yang Z, Tang J, Chen Z, Wu XF. Synthesis of 3 H-1,2,4-Triazol-3-ones via NiCl 2-Promoted Cascade Annulation of Hydrazonoyl Chlorides and Sodium Cyanate. Org Lett 2021; 23:2359-2363. [PMID: 33691408 DOI: 10.1021/acs.orglett.1c00568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nickel-promoted cascade annulation reaction for the facile synthesis of 3H-1,2,4-triazol-3-ones from readily available hydrazonoyl chlorides and sodium cyanate has been developed. The transformation occurs through a cascade nickel-promoted intermolecular nucleophilic addition-elimination process, intramolecular nucleophilic addition, and a hydrogen-transfer sequence. The method has been successfully applied for the construction of the core skeleton of the angiotensin II antagonist.
Collapse
Affiliation(s)
- Shiying Du
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuguang Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianhua Tang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengkai Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
20
|
Tang J, Zhang J, Zhang Y, Chen Z, Wu XF. Palladium-catalyzed carbonylative synthesis of 5-trifluoromethyl-1,2,4-triazoles from trifluoroacetimidohydrazides and aryl iodides. Org Chem Front 2021. [DOI: 10.1039/d1qo01064f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new palladium-catalyzed three-component carbonylative procedure for the construction of 5-trifluoromethyl-1,2,4-triazoles from trifluoroacetimidohydrazides and aryl iodides has been developed. TFBen is applied as a safe and convenient solid CO surrogate here.
Collapse
Affiliation(s)
- Jianhua Tang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yu Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
21
|
Zhang J, Xu TH, Chen Z, Wu XF. Metal-free oxidative cyclization of trifluoroacetimidohydrazides with methylhetarenes: a facile access to 3-hetaryl-5-trifluoromethyl-1,2,4-triazoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00790d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal-free oxidative cyclization of trifluoroacetimidohydrazides with methylhetarenes for the efficient synthesis of 3-hetaryl-5-trifluoromethyl-1,2,4-triazoles has been developed.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Tian-Hui Xu
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
22
|
Zhu WQ, Fang YC, Han WY, Li F, Yang MG, Chen YZ. Palladium-catalyzed [2 + 2 + 1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Org Chem Front 2021. [DOI: 10.1039/d1qo00222h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of chromone fused cyclopentanones are efficiently generated in good to high yields via palladium-catalyzed [2 + 2 + 1] annulation, in which cyclopropenone was utilized for the first time as the sole CO surrogate in the carbonylation process.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Min-Ge Yang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| |
Collapse
|