1
|
Cui W, Xu X, Zhang C, Wang D, Yang Y, Wang Q, Wang J. Manganese-Promoted Electrochemical Imino-Pinacol Coupling to Access Vicinal Diamines. J Org Chem 2025; 90:3659-3664. [PMID: 40042358 DOI: 10.1021/acs.joc.4c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
We herein introduce an electrochemical imino-pinacol coupling reaction to access the vicinal diamine scaffold. This green and convenient protocol employs in situ-generated imines as starting materials to deliver a broad range of diamine products under electroreductive conditions. Moreover, this protocol is also applicable to electrochemical pinacol coupling. Mechanistic investigation suggests that a Mn(III) additive is essential for promoting the SET reduction of the imine starting material and preventing the formation of the over-reduced amine side product.
Collapse
Affiliation(s)
- Weihao Cui
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xiaolong Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Cong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Dong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yingqi Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
2
|
Yadav MK, Chowdhury S. Recent advances in the electrochemical functionalization of N-heterocycles. Org Biomol Chem 2025; 23:506-545. [PMID: 39564858 DOI: 10.1039/d4ob01187b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nitrogen-containing heterocyclic cores are of immense importance due to their high abundance in naturally occurring or synthetic molecules having wide applications in different fields of basic and applied sciences. The functionalities introduced in an N-heterocyclic core play an important role in regulating the physiochemical behavior of the particular N-heterocycles to alter their chemical and biological reactivity. Suitably functionalized N-heterocycles demonstrate their widespread applications in pharmaceuticals, agronomy, materials sciences, synthetic chemistry, pigments, etc. During the last decade, electrochemistry has emerged as a sustainable alternative to conventional synthetic approaches by minimizing reagent uses and chemical waste. Synthetic chemists have extensively utilized the tool to functionalize N-heterocycles. This is evidenced by the appearance of more than a hundred methods on the topic over recent years, signifying the importance of the synthetic area. This review is focused on the accumulation of synthetic methods based on the electrochemical functionalization of N-heterocycles developed over the recent decade. Literature reports on the C-/N-H-functionalization and functional modifications of N-heterocycles that are accessible through the available search engines are included in the review. Relevant mechanistic details in support of the reported reactions are discussed to present a clear picture of the reaction pathways. The review aims to provide a clear picture of the possible pathways of electron transfer, the electrochemical behavior of different N-heterocyclic cores, functionalization reagents, and the chemical processes that occur during the electrochemical functionalization/modification of N-heterocycles.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Sushobhan Chowdhury
- University School of Automation and Robotics, Guru Gobind Singh Indraprastha University, East Delhi Campus, Patel Street, Vishwas Nagar Extension, Shahdara, Delhi-110032, India.
| |
Collapse
|
3
|
Pan C, Chen D. Photocatalytic Consecutive Photoinduced Electron Transfer-Enabled C(sp 3)-H Pyridylation of Dihydroquinoxalin-2-ones. J Org Chem 2024; 89:17587-17597. [PMID: 39576665 DOI: 10.1021/acs.joc.4c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A photocatalytic decyanative C(sp3)-H pyridination of dihydroquinoxalin-2-ones with 4-cyanopyridines was developed by utilizing 4CzIPN as the photocatalyst. Mechanism studies show that this organophotocatalytic direct C(sp3)-H pyridination undergoes a radical-radical cross-coupling pathway promoted by consecutive photoinduced electron transfer.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Dongdong Chen
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
4
|
Niu C, Yang J, Yan K, Su Z, Li B, Wen J. A General Radical Functionalization of Quinoxalin-2(1 H)-ones via a Donor-Acceptor Inversion Strategy. J Org Chem 2024; 89:13284-13295. [PMID: 39196991 DOI: 10.1021/acs.joc.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The radical donor-acceptor inversion strategy represents a highly promising approach in the field of radical chemistry. The present study initially describes a metal-free, versatile, and modular approach for the radical functionalization of quinoxalin-2(1H)-ones via a strategy of radical donor-acceptor inversion under simple reaction conditions. More than 66 examples were provided in moderate yields. The mechanistic study has confirmed that the driving force behind this radical reaction is the in situ formation of a salt through the interaction between quinoxalin-2(1H)-ones and acid/HFIP, which exhibits potent oxidation properties. Additionally, it has been observed that the evident hydrogen bonding between quinoxalin-2(1H)-ones and HFIP can effectively mitigate the oxidation potential.
Collapse
Affiliation(s)
- Cong Niu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Zhenda Su
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
5
|
Yu D, Yang W, Chen S, Zhou CY, Guo Z. Photocatalyst-Free Visible Light-Induced C(sp 2)-H Arylation of Quinoxalin-2(1H)-ones and Coumarins. Chemistry 2024; 30:e202401371. [PMID: 38825569 DOI: 10.1002/chem.202401371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Herein, we describe a visible light-induced C(sp2)-H arylation method for quinoxalin-2(1H)-ones and coumarins using iodonium ylides without the need for external photocatalysts. The protocol demonstrates a broad substrate scope, enabling the arylation of diverse heterocycles through a simple and mild procedure. Furthermore, the photochemical reaction showcases its applicability in the efficient synthesis of biologically active molecules. Computational investigations at the CASPT2//CASSCF/PCM level of theory revealed that the excited state of quinoxalin-2(1H)-one facilitates electron transfer from its π bond to the antibonding orbital of the C-I bond in the iodonium ylide, ultimately leading to the formation of an aryl radical, which subsequently participates in the C-H arylation process. In addition, our calculations reveal that during the single-electron transfer (SET) process, the C-I bond cleavage in iodonium ylide and new C-C bond formation between resultant aryl radical and cationic quinoxaline species take place in a concerned manner. This enables the arylation reaction to efficiently proceed along an energy-efficient route.
Collapse
Affiliation(s)
- Dingzhe Yu
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Wenjing Yang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Shuicai Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| |
Collapse
|
6
|
Zhang Z, Zhou Y, Wang J, Zhang Y, Wang L, Liu J, Zhou C, Wang M, Li P. Radical relay cyclization/C-C bond formation of allyloxy-tethered aryl iodides with quinoxalin-2(1 H)-ones via polysulfide anion photocatalysis. Org Biomol Chem 2024; 22:1708-1713. [PMID: 38315045 DOI: 10.1039/d3ob01978k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A visible-light-induced radical relay cyclization/C-C bond formation of quinoxalin-2(1H)-ones with allyloxy-tethered aryl iodides using polysulfide anions as a photocatalyst is described. This protocol allows efficient access to a variety of complicated molecules bearing both quinoxalin-2(1H)-one and 2,3-dihydrobenzofuran motifs in high yields under mild reaction conditions with a broad range of substrates.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Yaqin Zhou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Jiehui Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Min Wang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
7
|
Liu F, Ding W, Lin J, Cheng X. Scandium-Catalyzed Electrochemical Synthesis of α-Pyridinyl Tertiary Amino Acids and Esters. Org Lett 2023; 25:7617-7621. [PMID: 37824579 DOI: 10.1021/acs.orglett.3c02734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
α-Pyridyl tertiary amino acids have potential pharmaceutical applications because of their structural features. However, their synthesis is still highly limited. Herein, we report a straightforward approach for the electrochemical synthesis of tertiary α-substituted amino acid derivatives via three-component reductive coupling. Using gaseous ammonia as both the N and H source, the α-keto ester reacts directly with 4-CN-pyridine. The application of scandium catalysis is the key for achieving chemoselectivity among various side reaction pathways.
Collapse
Affiliation(s)
- Feng Liu
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing 210023, China
| | - Weijie Ding
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing 210023, China
- Department of Material Science and Technology, Taizhou University, Taizhou 318000, China
| | - Jiacong Lin
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing 210023, China
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Cui JF, Zhong WQ, Huang JM. Annulation Reaction of Quinoxalin-2(1 H)-ones Initiated by Electrochemical Decarboxylation of N-Arylglycines. J Org Chem 2023; 88:1147-1154. [PMID: 36630409 DOI: 10.1021/acs.joc.2c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new methodology for the synthesis of tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones has been accomplished through annulation of quinoxalin-2(1H)-ones initiated by electrochemical decarboxylation of N-arylglycines catalyzed by ferrocene. With a pair of oxidative and reductive processes occurring among the substrates and intermediates instead of on the electrodes, the electricity consumption was decreased.
Collapse
Affiliation(s)
- Jian-Feng Cui
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
9
|
Monreal-Corona R, Besalú E, Pla-Quintana A, Poater A. Photoredox catalysis leading to triazolo-quinoxalinones at room temperature: selectivity of the rate determining step. Org Biomol Chem 2022; 20:9330-9336. [PMID: 36254586 DOI: 10.1039/d2ob01587k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interest in the fusion product of quinoxalinone skeletons and 1,2,3-triazole units has greatly increased in recent years since they are known to be agonists of G-protein-coupled Niacin receptor 109A and inhibitors of the benzodiazepine and adenosine receptors. Here, we unveil the mechanism for the photoredox catalyzed synthesis of those scaffolds by means of DFT calculations. The calculations indicate that the rate determining step of this transformation is the attack of the in situ generated radical intermediate on the CN bond of the quinoxalinone species to form a new C-C bond. Predictive chemistry here reveals that the energy difference is so subtle, and gives the recipe of which substituents, sterically and electronically, can fit to perform the reaction at room temperature.
Collapse
Affiliation(s)
- Roger Monreal-Corona
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Emili Besalú
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Anna Pla-Quintana
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Albert Poater
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
10
|
Ding W, Li M, Fan J, Cheng X. Palladium-catalyzed asymmetric allylic 4-pyridinylation via electroreductive substitution reaction. Nat Commun 2022; 13:5642. [PMID: 36163325 PMCID: PMC9512896 DOI: 10.1038/s41467-022-33452-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The enantioselective pyridinylation is important for providing chiral compounds bearing heterocycles of pharmaceutical interests. 4-CN-pyrinde is extensively applied in the radical pyridinylation reaction, however, its' enantioselective application is highly challenging. To achieve this goal, we propose an electrochemical catalytic activation of 4-CN-pyridine with a chiral transition metal complex instead of direct cathodic reduction. The chiral catalyst acts as the electron mediator and the transition metal catalysis in turn. The radical species from 4-CN-pyridine is captured via radical rebound by chiral catalyst, and undergoes enantioselective pyridinylation reaction. Here, we show the first method for catalytic asymmetric allylic 4-pyridinylation reactions using 4-CN-pyridine under electrochemical conditions.
Collapse
Affiliation(s)
- Weijie Ding
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mengfan Li
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinkun Fan
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Niu C, Yang J, Yan K, Xie J, Jiang W, Li B, Wen J. An electrochemical gram-scale protocol for pyridylation of inert N-heterocycles with cyanopyridines. STAR Protoc 2022; 3:101565. [PMID: 35880134 PMCID: PMC9307674 DOI: 10.1016/j.xpro.2022.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here, we present a protocol to decyanopyridate inert N-heterocycles access to N-fused heterocycles via the mechanism of dual proton-coupled electron transfer (PCET). We describe a detailed guide to performing an electrochemical gram-scale protocol for decyanopyridation of inert N-heterocycles. The desired pyridylated quinolone is synthesized in a 5.0 mmol scale with a yield of 76%. The protocol is limited to cyanopyridines. For complete details on the use and execution of this protocol, please refer to Niu et al. (2022). Electrochemical NH4+-assisted dual PCET followed by radical cross-coupling Synthesis of N-fused heterocycles in gram scale Application of electron-deficient quinolines as radical precursors The protocol is limited to cyanopyridines
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Cong Niu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Jiafang Xie
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Wei Jiang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China.
| |
Collapse
|
12
|
Kumar GS, Shinde PS, Chen H, Muralirajan K, Kancherla R, Rueping M. Paired Electrolysis for Decarboxylative Cyanation: 4-CN-Pyridine, a Versatile Nitrile Source. Org Lett 2022; 24:6357-6363. [PMID: 36036921 DOI: 10.1021/acs.orglett.2c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A decarboxylative cyanation of amino acids under paired electrochemical reaction conditions has been developed. 4-CN-pyridine was found to be a new and effective cyanation reagent under catalyst-free conditions. Mechanistic studies support a nucleophilic reaction pathway, and the cyanation protocol can be applied to diverse substrates including N,N-dialkyl aniline and indole derivatives.
Collapse
Affiliation(s)
- Gadde Sathish Kumar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Prashant S Shinde
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Haifeng Chen
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Ma C, Meng H, Li J, Yang X, Jiang Y, Yu B. Photocatalytic
Transition‐Metal‐Free
Direct
3‐Acetalation
of Quinoxaline‐2(
1
H
)‐ones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jing Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xianguang Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry Zhengzhou University. Zhengzhou 450001 China
| |
Collapse
|
14
|
Niu C, Yang J, Yan K, Xie J, Jiang W, Li B, Wen J. Electrochemical ammonium-cation-assisted pyridylation of inert N-heterocycles via dual-proton-coupled electron transfer. iScience 2022; 25:104253. [PMID: 35521512 PMCID: PMC9062347 DOI: 10.1016/j.isci.2022.104253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
A straightforward and practical strategy for pyridylation of inert N-heterocycles, enabled by ammonium cation and electrochemical, has been described. This protocol gives access to various N-fused heterocycles and bidentate nitrogen ligand compounds, through dual-proton-coupled electron transfer (PCET) and radical cross-coupling in the absence of exogenous metal and redox reagent. It features broad substrate scope, wide functional group tolerance, and easy gram-scale synthesis. Various experiments and density functional theory (DFT) calculation results show the mechanism of dual PCET followed by radical cross-coupling is the preferred pathway. Moreover, ammonium salt plays the dual role of protonation reagent and electrolyte in this conversion, and the resulting product 9-(pyridin-4-yl)acridine compound can be used for fluorescence recognition of Fe2+ and Pd2+ with high sensitivity.
Collapse
Affiliation(s)
- Cong Niu
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jiafang Xie
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Wei Jiang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P. R. China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
15
|
Zhou N, Liu R, Zhang C, Wang K, Feng J, Zhao X, Lu K. Photoinduced Three-Component Difluoroalkylation of Quinoxalinones with Alkenes via Difluoroiodane(III) Reagents. Org Lett 2022; 24:3576-3581. [PMID: 35546558 DOI: 10.1021/acs.orglett.2c01358] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An environmentally friendly strategy for the photocatalyzed three-component reaction between quinoxalinones, alkenes, and hypervalent iodine(III) reagents is disclosed. The new designed difluoroiodane(III) reagent shows excellent reactivity, providing a wide range of difluoroalkyl-substituted quinoxaline-2(1H)-ones in moderate to excellent yields under mild conditions. Experimental studies demonstrated that a difluoroalkyl radical intermediate was involved in this reaction.
Collapse
Affiliation(s)
- Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Ruiyue Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Chunmeng Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Kun Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Jiaxu Feng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| |
Collapse
|
16
|
Zhou HJ, Huang JM. Hydropyridylation of α,β-Unsaturated Esters through Electroreduction of 4-Cyanopyridine. J Org Chem 2022; 87:5328-5338. [PMID: 35385272 DOI: 10.1021/acs.joc.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mild and highly efficient method for the hydropyridylation of α,β-unsaturated esters has been developed. This protocol provides the products smoothly with a wide substrate scope in an undivided cell under ambient conditions. Moreover, studies showed that the scope could be extended to other unsaturated compounds, including enones and aldehydes.
Collapse
Affiliation(s)
- Hua-Jian Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
17
|
Wen J, Zhao W, Gao X, Ren X, Dong C, Wang C, Liu L, Li J. Synthesis of [1,2,3]Triazolo-[1,5- a]quinoxalin-4(5 H)-ones through Photoredox-Catalyzed [3 + 2] Cyclization Reactions with Hypervalent Iodine(III) Reagents. J Org Chem 2022; 87:4415-4423. [PMID: 35234036 DOI: 10.1021/acs.joc.2c00135] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient synthesis of a variety of [1,2,3]triazolo-[1,5-a]quinoxalin-4(5H)-ones via a [3 + 2] cyclization reaction by photoredox catalysis between quinoxalinones and hypervalent iodine(III) reagents is reported. A range of quinoxalinones and hypervalent iodine(III) reagents were tolerated well. This cyclization reaction allows access to structurally diverse [1,2,3]triazolo-[1,5-a]quinoxalin-4(5H)-ones in moderate to good yields.
Collapse
Affiliation(s)
- Jinxia Wen
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Wenyan Zhao
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Xu Gao
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Xiaofang Ren
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Chunping Dong
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Cheli Wang
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Li Liu
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Jian Li
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
18
|
Sun X, Qu C, Ma C, Zhao X, Chai G, Jiang Z. Photoredox Catalytic Cascade Radical Addition to Construct 1,4- Diketone-Functionalized Quinoxalin-2(1 H)-one Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Ding W, Sheng J, Li J, Cheng X. Electroreductive 4-pyridylation of unsaturated compounds using gaseous ammonia as a hydrogen source. Org Chem Front 2022. [DOI: 10.1039/d2qo00132b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By using ammonia as a hydrogen source, electrochemical pyridylation of unsaturated compounds is achieved with more than 50 examples. In particular, the β-keto ester could be converted to the corresponding tertiary β-hydroxyl ester for the first time.
Collapse
Affiliation(s)
- Weijie Ding
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Jie Sheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Jin Li
- Jiangsu Provincial Engineering Laboratory of Advanced Materials for Salt Chemical Industry, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
20
|
Yang J, Ma J, Yan K, Tian L, Li B, Wen J. Electrochemical Ammonium Cation‐Assisted Hydropyridylation of Ketone‐Activated Alkenes: Experimental and Computational Mechanistic Studies. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Jing Ma
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Laijin Tian
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics Institute of Biophysics Dezhou University Dezhou 253023 People's Republic of China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| |
Collapse
|
21
|
Ye ZP, Liu F, Duan XY, Gao J, Guan JP, Xiao JA, Xiang HY, Chen K, Yang H. Visible Light-Promoted Radical Relay Cyclization/C-C Bond Formation of N-Allylbromodifluoroacetamides with Quinoxalin-2(1 H)-ones. J Org Chem 2021; 86:17173-17183. [PMID: 34743511 DOI: 10.1021/acs.joc.1c02285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible light-promoted radical relay of N-allylbromodifluoroacetamide with quinoxalin-2(1H)-ones was developed in which 5-exo-trig cyclization and C-C bond formation were involved. This protocol was performed under mild conditions to facilely offer a variety of hybrid molecules bearing both quinoxalin-2(1H)-one and 3,3-difluoro-γ-lactam motifs. These prepared novel skeletons would expand the accessible chemical space for structurally complex heterocycles with potential biological activities.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xin-Yu Duan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
22
|
Sun K, Xiao F, Yu B, He WM. Photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63850-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ma J, Yang J, Yan K, Sun X, Wei W, Tian L, Wen J. Electrochemical‐Induced C(sp
3
)−H Dehydrogenative Trimerization of Pyrazolones to Tripyrazolones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Ma
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Xue Sun
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Wei Wei
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Laijin Tian
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| |
Collapse
|
24
|
Zhang X, Yang C, Gao H, Wang L, Guo L, Xia W. Reductive Arylation of Aliphatic and Aromatic Aldehydes with Cyanoarenes by Electrolysis for the Synthesis of Alcohols. Org Lett 2021; 23:3472-3476. [PMID: 33861088 DOI: 10.1021/acs.orglett.1c00920] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electroreductive arylation reaction of aliphatic and aromatic aldehydes as well as ketones with electro-deficient (hetero)arenes is described. A variety of cyano(hetero)arenes and carbonyl compounds, especially aliphatic aldehydes, have been examined, providing secondary and tertiary alcohols in moderate to good yields. Mechanistic studies, including cyclic voltammetry (CV), electron paramagnetic resonance (EPR), and divided-cell experiments, support the generation of aliphatic ketyl radicals and persistent heteroaryl radical anions via cathodic reduction followed by radical-radical cross-coupling.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Han Gao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lei Wang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
25
|
Li D, Wang X, Li S, Fu C, Li Q, Xu D, Ma Y. Recent Advances in Electrochemical C(3)—H Functionalization of Quinoxalin-2(1H)-ones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Yang X, Meng WD, Xu XH, Huang Y. Photoredox-catalyzed 2,2,2-trifluoroethylation and 2,2-difluoroethylation of alkenes with concomitant introduction of a quinoxalin-2(1 H)-one moiety. Org Chem Front 2021. [DOI: 10.1039/d1qo01170g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A photoredox-catalyzed three-component radical cascade reaction of alkenes, quinoxalin-2(1H)-ones, and ICH2CF3/ICH2CF2H is developed.
Collapse
Affiliation(s)
- Xiu Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Wei-Dong Meng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yangen Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
27
|
Kiran, Rani P, Chahal S, Sindhu J, Kumar S, Varma RS, Singh R. Transition metal-free C-3 functionalization of quinoxalin-2(1 H)-ones: recent advances and sanguine future. NEW J CHEM 2021. [DOI: 10.1039/d1nj03445f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A gradual shift from metal-catalyzed to metal-free methods is occurring, as the latter are more environmentally benign. This review discusses sustainable protocols for the construction of C–C, C–N, C–P, C–S, and C–O bonds via C–H functionalization of quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sandhya Chahal
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| |
Collapse
|