1
|
Chen B, Zhang X, Yang Y, Xu D, Wu Q, Wang S, Bao S, Zhang X, Ding Y, Wang L, Chen Y. Hypocretenolides: collective total syntheses and activities toward metastatic colon cancer. Chem Sci 2024; 15:6397-6401. [PMID: 38699277 PMCID: PMC11062092 DOI: 10.1039/d4sc01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
A concise and collective synthetic route to hypocretenolides was developed for the first time. This route features one-pot addition-alkylation and intramolecular 1,3-dipolar cycloaddition to efficiently assemble the 5/7/6 ring system. Our syntheses enabled multigram preparation of hypocretenolide which facilitated further biological evaluation. Preliminary CCK-8 cytotoxic results of hypocretenolide indicated its IC50 values within 1 μM against 4 colon cancer cell lines. Wound healing and transwell assays suggested the promising inhibitory activities of hypocretenolide toward the migratory capabilities of colon cancer cells in vitro. The animal results confirmed that hypocretenolide can inhibit metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Bolin Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xijing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Yufen Yang
- College of Pharmacy, Nankai University 38 Tongyan Road Tianjin 300353 China
| | - Dongdong Xu
- College of Pharmacy, Nankai University 38 Tongyan Road Tianjin 300353 China
| | - Qianwei Wu
- College of Pharmacy, Nankai University 38 Tongyan Road Tianjin 300353 China
| | - Shibo Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Shiqi Bao
- Accendatech Co. Ltd 32nd Floor, Rongqiao Center, Intersection of Changjiang Road and Nankai Six Road Tianjin 300102 China
| | - Xuemei Zhang
- Accendatech Co. Ltd 32nd Floor, Rongqiao Center, Intersection of Changjiang Road and Nankai Six Road Tianjin 300102 China
| | - Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Nankai University 94 Weijin Road Tianjin 300071 China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
2
|
Gennaiou K, Kelesidis A, Zografos AL. Climbing the Oxidase Phase Ladder by Using Dioxygen as the Sole Oxidant: The Case Study of Costunolide. Org Lett 2024; 26:2934-2938. [PMID: 38551481 PMCID: PMC11187638 DOI: 10.1021/acs.orglett.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
Natural sesquiterpenoid lactones are prominent scaffolds in drug discovery. Despite the progress made in their synthesis, their extensive oxidative decoration makes their chemo- and stereoselective syntheses highly challenging. Herein, we report our effort to mimic part of the oxidase phase used in the costunolide pathway to achieve the protecting-group-free total synthesis of santamarine, dehydrocostus lactone, estafiatin, and nine more related natural sesquiterpenoid lactones by using dioxygen as the sole oxidant.
Collapse
Affiliation(s)
- Kyriaki Gennaiou
- Department of Chemistry, Aristotle
University of Thessaloniki, Main University
Campus, Thessaloniki, 54124, Greece
| | - Antonis Kelesidis
- Department of Chemistry, Aristotle
University of Thessaloniki, Main University
Campus, Thessaloniki, 54124, Greece
| | - Alexandros L. Zografos
- Department of Chemistry, Aristotle
University of Thessaloniki, Main University
Campus, Thessaloniki, 54124, Greece
| |
Collapse
|
3
|
Zhao P, Xin BS, Ma ZT, Yao GD, Shi R, He XH, Lin B, Huang XX, Song SJ. Six undescribed guaianolide-type sesquiterpenes from the aerial parts of Daphne penicillata. Fitoterapia 2024; 172:105762. [PMID: 38040095 DOI: 10.1016/j.fitote.2023.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Six undescribed guaianolide sesquiterpenes (1-6) were obtained from the aerial parts of Daphne penicillata. Their structures and absolute configuration were elucidated by HRESIMS, NMR analyses, ECD calculations and single-crystal X-ray diffraction analysis. Structurally, all compounds possess the typical 5,7-fused system of 8,12-guaianolides and this guaianolide-type was first reported to be isolated from Daphne penicillata. All compounds (1-6) were evaluated for anti-inflammatory and cytotoxic activity. Among them, compounds 1 and 5 showed moderate inhibitory effects on LPS-induced NO production in BV2 cells and 4 displayed potential inhibition against Hep3B cells with an IC50 value of 7.33 μM.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ben-Song Xin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhen-Tao Ma
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Yunnan, Kunming 650224, China
| | - Xia-Hong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Yunnan, Kunming 650224, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Basic Science Research Center Base (Pharmaceutical Science), Shandong Province, Yantai University, Yantai 264005, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
4
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
5
|
Fernandes RA, Moharana S, Khatun GN. Recent advances in the syntheses of guaianolides. Org Biomol Chem 2023; 21:6652-6670. [PMID: 37551715 DOI: 10.1039/d3ob01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Sesquiterpene lactones, especially guaianolides representing a bigger class of natural products, have served as appealing candidates for total synthesis due to their varied bio- and pharmaceutical activities. This tutorial review delineates the creative efforts of many researchers in the total syntheses of different complex guaianolides recently published in the literature. Many of the syntheses display meticulous interplay between new methods and the ingenuity of strategies achieved through well-planned routes. In some cases, the Chiron approach has come in quite handy, wherein the structural features and stereochemistry of select molecules could map well with naturally available starting materials. A few catalytic methods like diastereoselective aldol reaction, enediyne or dienyne metathesis, or photochemical methods have been efficiently used. This compilation also aims to enhance the diversity space based on these natural products and further interest in the sustainable total synthesis of this class of compounds and related molecules.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Sanjita Moharana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Gulenur Nesha Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
6
|
Salin AV, Shabanov AA, Khayarov KR, Nugmanov RI, Islamov DR. Stereoelectronic Effect in the Reaction of α-Methylene Lactones with Tertiary Phosphines and Its Application in Organocatalysis. J Org Chem 2023; 88:11954-11967. [PMID: 37540578 DOI: 10.1021/acs.joc.3c01223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The kinetic data indicate that the addition of tertiary phosphines to α-methylene lactones in acetic acid is strongly accelerated in comparison to the reactions of related open-chain esters. Six-membered α-methylene-δ-valerolactone exhibited a more pronounced rate increase than five-membered α-methylene-γ-butyrolactone. The use of α-methylene-γ-butyrolactam as a nitrogen analogue of α-methylene-γ-butyrolactone resulted in a total loss of the reaction acceleration. The observed reactivities were rationalized by DFT calculations at the RwB97XD/6-31+G(d,p) level of theory, showing that the intramolecular interaction between phosphonium and enolate oxygen centers provided by the locked s-cis-geometry of the heterocycles plays an important role in the stabilization of intermediate zwitterions. The reactivity is also controlled by the conformational flexibility of the heterocycle. The geometries of five-membered and, especially, six-membered lactone cycles are slightly changed upon the nucleophilic attack of phosphine, leading to the stabilizing stereoelectronic effect by the Ρ···Ο interaction. The addition of phosphine to α-methylene-γ-butyrolactam significantly distorts the initial geometry of the heterocycle, making the nucleophilic attack unfavorable. The application of the stereoelectronic effect to enhance the efficiency of the phosphine-catalyzed Michael and Pudovik reactions of α-methylene lactones was demonstrated.
Collapse
Affiliation(s)
- Alexey V Salin
- A.M. Butlerov Institute of Chemistry,Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russian Federation
| | - Andrey A Shabanov
- A.M. Butlerov Institute of Chemistry,Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russian Federation
| | - Khasan R Khayarov
- A.M. Butlerov Institute of Chemistry,Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russian Federation
| | - Ramil I Nugmanov
- Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Daut R Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Science, Kremlevskaya Street 31, Kazan 420008, Russian Federation
| |
Collapse
|
7
|
Kimura Y, Ohashi E, Karanjit S, Taniguchi T, Nakayama A, Imagawa H, Sato R, Namba K. Total Syntheses of Proposed Structures of 4,10-Dihydroxy-8,12-guaianolides. Org Lett 2022; 24:3297-3301. [PMID: 35446586 DOI: 10.1021/acs.orglett.2c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first total syntheses of two 4,10-dihydroxy-8,12-guaianolides that were reported to be natural products were achieved. Toward the syntheses of a collection of related guaianolides, the typical 5,7-fused system of 8,12-guaianolides was constructed by a ring expansion reaction of a hydroxylated coronafacic acid analogue that can be practically synthesized and optically resolved. The total syntheses of these compounds revealed that the previously reported structures of both natural products were incorrect.
Collapse
Affiliation(s)
- Yuki Kimura
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Eisaku Ohashi
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Sangita Karanjit
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Takashi Taniguchi
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Atsushi Nakayama
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Hiroshi Imagawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Ryota Sato
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kosuke Namba
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| |
Collapse
|
8
|
Liu W, Winssinger N. Synthesis of α-exo-Methylene-γ-butyrolactones: Recent Developments and Applications in Natural Product Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1577-6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe α-exo-methylene-γ-butyrolactone moiety is present in a vast array of structurally diverse natural products and is often central to their biological activity. In this short review, we summarize new approaches to α-exo-methylene-γ-butyrolactones developed over the past decade as well as their applications in total synthesis.1 Introduction2 Approaches to α-exo-Methylene-γ-butyrolactones2.1 Enantioselective Synthesis via Lactonization Approaches2.2 Enantioselective Halolactonizations2.3 Enantioselective Barbier-Type Allylation2.4 C–H Insertion/Olefination Sequences2.5 Alkene Cyclization2.6 Strain-Driven Dyotropic Rearrangement3 β-(Hydroxymethylalkyl)-α-exo-methylene-γ-butyrolactones4 Applications in Total Synthesis4.1 Sesquiterpene Lactones4.2 Lignans4.3 Other Monocyclic Natural Products4.4 Choice of Methodology in Recent Total Syntheses5 Summary and Outlook
Collapse
|
9
|
Nakamura T, Pitna DB, Kimura K, Yoshimoto Y, Uchiyama T, Mori T, Kondo R, Hara S, Egoshi Y, Yamaguchi S, Suzuki N, Suzuki Y, Usuki T. Total synthesis of cynaropicrin. Org Biomol Chem 2021; 19:6038-6044. [PMID: 33982042 DOI: 10.1039/d1ob00657f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cynaropicrin is found in artichoke (Cynara scolymus) and is the source of its bitter taste and it is a sesquiterpene lactone with a 5-7-5 tricyclic skeleton, six chiral centers, and four exo-olefins. This natural product has numerous attractive biological activities including the inhibition of NF-κB activation, antihepatitis C activity, and antitrypanosomal activity. In this study, the first total synthesis of cynaropicrin was achieved starting from (S)-α-pinene. The synthesis involved a stereoselective Favorskii rearrangement and an indium-promoted diastereoselective Barbier reaction.
Collapse
Affiliation(s)
- Tenma Nakamura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Dinda B Pitna
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Kogaku Kimura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Yukiko Yoshimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Tomoya Uchiyama
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Takaya Mori
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Ryosuke Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Shihori Hara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Yuki Egoshi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Shoya Yamaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Yumiko Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
10
|
Kaden F, Nowotni S, Höfner F, Lorenz M, Barthel A, Jäger A, Hennersdorf F, Weigand JJ, Metz P. Asymmetric Total Synthesis of (−)‐Dehydrocostus Lactone by Domino Metathesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Felix Kaden
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Susanne Nowotni
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Franziska Höfner
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Melanie Lorenz
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - André Barthel
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Anne Jäger
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Felix Hennersdorf
- Fakultät Chemie und Lebensmittelchemie Anorganische Molekülchemie, Technische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
| | - Jan J. Weigand
- Fakultät Chemie und Lebensmittelchemie Anorganische Molekülchemie, Technische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
| | - Peter Metz
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| |
Collapse
|