1
|
Kong Y, Gong M, Xu X, Wu Y, Jiang X. An efficient direct electrolysis method for the synthesis of 1,1,1,3,3,3-hexafluoroisopropyxy substituted imidazo[1,2- a]pyridines. Org Biomol Chem 2025; 23:2190-2194. [PMID: 39869101 DOI: 10.1039/d4ob02073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidative cross-dehydrogenative-coupling (CDC) is an ideal strategy to conduct the C3-alkoxylation of imidazo[1,2-a]pyridine, but it remains a challenge owing to limitation imposed by the use of alkyl alcohols and carboxylic acids. Herein, we report a mild and efficient 2-electrode constant-potential electrolysis of imidazo[1,2-a]pyridine with hexafluoroisopropanol (HFIP) to produce various imidazo[1,2-a]pyridine HFIP ethers. Mechanistic studies indicated that the electrooxidation reaction might involve radical coupling and ionic reaction.
Collapse
Affiliation(s)
- Yanyan Kong
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ming Gong
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xuemei Xu
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xingmao Jiang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
| |
Collapse
|
2
|
Gadekar AB, Nipate DS, Rangan K, Kumar A. TEMPO-Mediated Direct C(sp 2)-H Alkoxylation/Aryloxylation of 1,4-Quinones. J Org Chem 2025; 90:1044-1053. [PMID: 39754577 DOI: 10.1021/acs.joc.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A convenient and efficient transition-metal-free method has been developed for the C(sp2)-H alkoxylation/aryloxylation of 1,4-quinones by direct cross-dehydrogenative coupling with readily available alcohols and phenols in the presence of TEMPO under simple and mild conditions. The method allowed the installation of a wide range of alkoxy/aryloxy groups, exhibited high functional group tolerance, showed a broad substrate scope, afforded good to excellent yields of products in a simple one-pot operation, and could be performed on a gram scale. Mechanistic investigation indicated the involvement of the radical pathway.
Collapse
Affiliation(s)
- Amol B Gadekar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
3
|
Liu L, Liu J, Li S, Yang M, Zhao X, Lu K. Visible light induced hydroxyfluoroalkylation of quinoxalin-2(1 H)-ones with N-trifluoroethoxyphthalimide under catalyst-free conditions. Org Biomol Chem 2025; 23:629-637. [PMID: 39587952 DOI: 10.1039/d4ob01616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
For the first time, we achieved visible light-induced direct C3-hydroxyfluoroalkylation of quinoxalin-2(1H)-ones using N-trifluoroethoxyphthalimide as the trifluoroethanol radical precursor, without the need for a photocatalyst. The metal-free and catalyst-free nature of this method makes it an efficient and environmentally friendly approach for synthesizing C3-hydroxyfluoroalkylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Liting Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Jing Liu
- Department of Chemistry, College of Sciences, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Siqi Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Mengfei Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
- Department of Chemistry, College of Sciences, Tianjin University of Science &Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Gallego-Gamo A, Pleixats R, Gimbert-Suriñach C, Vallribera A, Granados A. Hydroxytrifluoroethylation and Trifluoroacetylation Reactions via SET Processes. Chemistry 2024:e202303854. [PMID: 38183331 DOI: 10.1002/chem.202303854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
Hydroxytrifluoroethyl and trifluoroacetyl groups are of utmost importance in biologically active compounds, but methods to tether these motifs to organic architectures have been limited. Typically, the preparation of these compounds relied on the use of strong bases or multistep routes. The renaissance of radical chemistry in photocatalytic, transition metal mediated, and hydrogen atom transfer (HAT) processes have allowed the installation of these medicinally relevant fluorinated motifs. This review provides an overview of the methods available for the direct synthesis of hydroxytrifluoroethyl- and trifluoroacetyl-derived compounds governed by single-electron transfer processes.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Albert Granados
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
5
|
Qu Y, Cai X, Guan Y, Tan J, Cai Z, Liu M, Huang Y, Hu J, Chen WH, Wu JQ. Divergent synthesis of difluoromethylated indole-3-carbinols, bisindolylmethanes and indole-3-methanamines. Org Biomol Chem 2023; 22:90-94. [PMID: 38047717 DOI: 10.1039/d3ob01735d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Indole-3-carbinol, bisindolylmethanes (BIMs) and indole-3-methanamines exhibit diverse therapeutic activities. Fluorinated molecules are widely used in pharmaceuticals. Herein we report a facile and straightforward method for the successful synthesis of difluoromethylated indole-3-carbinols, bisindolylmethanes and indole-3-methanamines by a Friedel-Crafts reaction. The reaction involves the in situ generation of difluoroacetaldehyde from difluoroacetaldehyde ethyl hemiacetal in the presence of a base or an acid. This protocol is distinguished by its good to excellent yields, broad substrate compatibility, good functional group tolerance and scalability.
Collapse
Affiliation(s)
- Yifei Qu
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Yuzhuang Guan
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jiamin Tan
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Zhangping Cai
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Minyun Liu
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Yasi Huang
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| |
Collapse
|
6
|
Gao J, Liu Z, Guo X, Wu L, Chen Z, Yang K. 1,1,1,3,3,3-Hexafluoro-2-Propanol-Promoted Friedel-Crafts Reaction: Metal-Free Synthesis of C3-Difluoromethyl Carbinol-Containing Imidazo[1,2- a]pyridines at Room Temperature. Molecules 2023; 28:7522. [PMID: 38005245 PMCID: PMC10672982 DOI: 10.3390/molecules28227522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
A facile and efficient method has been developed for the synthesis of C3-difluoromethyl carbinol-containing imidazo[1,2-a]pyridines at room temperature via the HFIP-promoted Friedel-Crafts reaction of difluoroacetaldehyde ethyl hemiacetal and imidazo[1,2-a]pyridines. This strategy could be applied to the direct C(sp2)-H hydroxydifluoromethylation of imidazo[1,2-a]pyridines and afford a series of novel difluoromethylated carbinols in good to satisfactory yields with 29 examples. Furthermore, gram-scale and synthetic transformation experiments have also been achieved, demonstrating its potential applicable value in organic synthesis. This green protocol has several advantages, including being transition metal- and oxidant-free, being carried out at room temperature, having high efficiency, and having a wide substrate scope.
Collapse
Affiliation(s)
| | | | | | | | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.G.); (Z.L.); (X.G.); (L.W.)
| | - Kai Yang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.G.); (Z.L.); (X.G.); (L.W.)
| |
Collapse
|
7
|
Firuz ME, Rajai-Daryasarei S, Rominger F, Biglari A, Balalaie S. Mn-Mediated Direct Regioselective C-H Trifluoromethylation of Imidazopyridines and Quinoxalines. J Org Chem 2023. [PMID: 37471701 DOI: 10.1021/acs.joc.3c00621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A simple and highly efficient strategy has been developed for direct C-H trifluoromethylation at C-3 of imidazopyridines and C-8 of quinoxalines with readily available Langlois reagent through KMnO4/AcOH system. This protocol showed broad substrate scope and afforded moderate-to-excellent yields of both products. It is the first report that the functionalization of quinoxalines occurred regioselectively at the C-8 position of quinoxalines. Mechanistic studies revealed that reaction proceeded via radical pathway.
Collapse
Affiliation(s)
- Mahdieh Esi Firuz
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, Heidelberg 69120, Germany
| | - Abbas Biglari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| |
Collapse
|
8
|
Yang J, Gui J, Mu M, Liu S, Li J, Ren J, Wang Z. Synthesis of Difluoromethylated Carbinols via a HFIP-Promoted Hydroxydifluoromethylation of Aniline, Indole, and Pyrrole Derivatives with Difluoroacetaldehyde Ethyl Hemiacetal. J Org Chem 2023; 88:4790-4798. [PMID: 36989386 DOI: 10.1021/acs.joc.2c02812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A hexafluoroisopropanol (HFIP)-promoted hydroxydifluoromethylation of aniline, indole, and pyrrole derivatives with difluoroacetaldehyde ethyl hemiacetal has been developed. This protocol provides a facile and straightforward approach to access diverse difluoromethylated carbinols in good to excellent yields under mild conditions. Furthermore, gram-scale and synthetic derivatization experiments have also been demonstrated.
Collapse
Affiliation(s)
- Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Jing Gui
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Miaomiao Mu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Saimei Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Jinshan Li
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| |
Collapse
|
9
|
Thakur A, Gupta SS, Dhiman AK, Sharma U. Photoredox Minisci-Type Hydroxyfluoroalkylation of Isoquinolines with N-Trifluoroethoxyphthalimide. J Org Chem 2023; 88:2314-2321. [PMID: 36705295 DOI: 10.1021/acs.joc.2c02726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A straightforward photocatalytic approach has been demonstrated to incorporate a trifluoroethanol unit onto the isoquinolines. Herein, we report N-trifluoroethoxyphthalimide as a hydroxyfluoroalkyl radical precursor, enabling efficient synthesis of trifluoroethanol-substituted heteroarenes. Radical quenching experiments confirmed the involvement of a free-radical pathway under developed photocatalytic conditions. The DFT calculations confirmed the intramolecular 1,2-HAT reactivity of the O-centered trifluoroethoxy radical (generated from N-trifluoroethoxyphthalimide under photocatalytic condition) to the C-centered trifluoroethanol radical. Fluorescence quenching studies suggested that isoquinoline was responsible for the quenching of Ir-photocatalyst emission. A catalytic cycle involving trifluoroethanol radical reaction with isoquinolines has been proposed.
Collapse
Affiliation(s)
- Ankita Thakur
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiv Shankar Gupta
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Sathish E, Gupta AK, Deeksha, Mishra SK, Sawant DM, Singh R. Heteroarylation of Congested α-Bromoamides with Imidazo-Heteroarenes and Indolizines via Aza-Oxyallyl Cations: Enroute to Dibenzoazepinone and Zolpidem Analogues. J Org Chem 2022; 87:14168-14176. [PMID: 36260747 DOI: 10.1021/acs.joc.2c01708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report a highly efficient and unprecedented approach for heteroarylation of congested α-bromoamides via electrophilic aromatic substitution of imidazo-heteroarenes and indolizines under mild reaction conditions (room temperature, metal, and oxidant free). The participation of an in situ generated aza-oxyallyl cation as an alkylating agent is the hallmark of this transformation. The method was readily adapted to synthesize novel imidazo-heteroarene-fused dibenzoazepinone architectures of potential medicinal value.
Collapse
Affiliation(s)
- Elagandhula Sathish
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| | - Ashis Kumar Gupta
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| | - Deeksha
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| | - Sandeep Kumar Mishra
- Department of Physics and NMR Research Center, Indian Institute of Science Education and Research, 411008Pune, India
| | - Devesh M Sawant
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| | - Ritesh Singh
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan305817, India
| |
Collapse
|
11
|
Liu B, Chen X, Pei C, Li J, Zou D, Wu Y, Wu Y. Ruthenium-Catalyzed ortho-C–H Hydroxyfluoroalkylation of Arenes with Fluorinated Alcohols. J Org Chem 2022; 87:14364-14373. [DOI: 10.1021/acs.joc.2c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Liu
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Xiaoyu Chen
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Congcong Pei
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jingya Li
- Tetranov Biopharm, LLC, Zhengzhou 450052, People’s Republic of China
| | - Dapeng Zou
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Yusheng Wu
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
- Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
12
|
Recent advances in transition-metal-free C–H functionalization of imidazo[1,2-a]pyridines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
13
|
Dhara S, Ghosh S, Das AR. An iron-catalyzed domino reaction of donor-acceptor cyclopropanes: a diastereoselective approach towards diversely functionalized pyrrolo-quinazolines. Org Biomol Chem 2022; 20:1415-1424. [PMID: 35014658 DOI: 10.1039/d1ob02215f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An expeditious synthetic route to access functionalized pyrrolo[2,1-b]quinazoline scaffolds has been achieved via domino ring opening cyclization (DROC) reactions of donor-acceptor (D-A) cyclopropanes and 2-amino(methyl)aniline derivatives. This novel iron catalyzed transformation is amenable to a wide range of substrates. Three new C-N bonds and two rings were sequentially constructed in this divergent one-pot process. The advantages of simple operation, high yields and general applicability make this procedure highly attractive and practical too.
Collapse
Affiliation(s)
- Samiran Dhara
- Department of Chemistry, University of Calcutta 92, A. P. C. Road, Kolkata-700009, India.
| | - Subhadeep Ghosh
- Department of Chemistry, University of Calcutta 92, A. P. C. Road, Kolkata-700009, India.
| | - Asish R Das
- Department of Chemistry, University of Calcutta 92, A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
14
|
Zhou Z, Luo D, Li G, Yang Z, Cui L, Yang W. Copper-catalyzed three-component reaction to synthesize polysubstituted imidazo[1,2- a]pyridines. RSC Adv 2022; 12:20199-20205. [PMID: 35919587 PMCID: PMC9280286 DOI: 10.1039/d2ra02722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
An efficient three-component one-pot and operationally simple cascade of 2-aminopyridines with sulfonyl azides and terminal ynones is reported, providing a variety of polysubstituted imidazo[1,2-a]pyridine derivatives in moderate to excellent yields. In particular, the reaction goes a through CuAAC/ring-cleavage process and forms a highly active intermediate α-acyl-N-sulfonyl ketenimine with base free. Three-component one-pot synthesis of polysubstituted imidazo[1,2-a]pyridine derivatives through a base free CuAAC/ring-cleavage process.![]()
Collapse
Affiliation(s)
- Zitong Zhou
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Danyang Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Guanrong Li
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhongtao Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Liao Cui
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Weiguang Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
15
|
Kushch SO, Goryaeva MV, Surnina EA, Burgart YV, Ezhikova MA, Kodess MI, Slepukhin PA, Saloutin VI. Multicomponent Domino Reactions for the Synthesis of Variable Hydrogenated Imidazo[1,2‐
a
]pyridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Svetlana O. Kushch
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Marina V. Goryaeva
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Elena A. Surnina
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Marina A. Ezhikova
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Mikhail I. Kodess
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Pavel A. Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch Russian Academy of Sciences S. Kovalevskoy St., 22 Ekaterinburg 620108 Russia
| |
Collapse
|
16
|
Nipate DS, Sonam, Shinde VN, Rangan K, Kumar A. TEMPO-Mediated Synthesis of Indolyl/Imidazo[1,2- a]pyridinyl-Substituted para-Quinone Methides from Butylated Hydroxytoluene. J Org Chem 2021; 86:17090-17100. [PMID: 34762443 DOI: 10.1021/acs.joc.1c02202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of indolyl or imidazo[1,2-a]pyridinyl-substituted para-quinone methides (p-QMs) is prepared by a metal-free, TEMPO-mediated cross-dehydrogenative coupling of butylated hydroxytoluene (BHT) with indoles or imidazo[1,2-a]pyridines in good to high yields. Broad substrate scope with respect to indoles and imidazo[1,2-a]pyridines, good functional group tolerance, and acid/base-free conditions are advantageous feature of the developed protocol. The method was amenable for scale-up on the gram scale. Based on control experiments, a reaction mechanism is proposed to describe this transformation.
Collapse
Affiliation(s)
- Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sonam
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
17
|
Li Y, Liu H, Huang Z, Wang H, Yu Z. Palladium-catalyzed cross-dehydrogenative-coupling of nitro-substituted internal alkenes with terminal alkenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Ma CH, Chen M, Feng ZW, Zhang Y, Wang J, Jiang YQ, Yu B. Functionalization of imidazo[1,2-a]pyridines via radical reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj00704a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recent advances in radical reactions for the direct functionalization of imidazo[1,2-a]pyridines are reviewed.
Collapse
Affiliation(s)
- Chun-Hua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Ming Chen
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Zhi-Wen Feng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Yan Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Jin Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Yu-Qin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Bing Yu
- Green Catalysis Centre
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
19
|
Qi H, Yan Y, Liao Y, Jiang F, Gao H, Deng GJ. I2-Catalyzed oxidative dehydrogenative tandem cyclization of 2-methylquinolines, arylamines and 1,4-dioxane. Org Chem Front 2021. [DOI: 10.1039/d1qo01125a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel I2-catalyst oxidative dehydrogenative tandem cyclization of 2-methylquinolines, arylamines and 1,4-dioxane for the construction of 2-([2,2′-biquinolin]-3-yloxy)ethan-1-ol derivatives has been developed under metal-free conditions.
Collapse
Affiliation(s)
- Hongrui Qi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yiyan Yan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yunfeng Liao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Furong Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hualan Gao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|