1
|
Shen YY, Li XB, Chen F, Du ZH, Bo CB, Li M, Liu N. Dehydrogenation of Aromatic Alcohols, Aldehydes, and Ketones Catalyzed by Cu(I) Complexes. J Org Chem 2025; 90:2644-2651. [PMID: 39933123 DOI: 10.1021/acs.joc.4c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Herein, we report that binuclear copper complexes used as dehydrogenative catalysts, combined with oxygen as an oxidant and 2,2,6,6-tetramethylpiperidinyl-1-oxide (TEMPO) as an additive, are capable of effectively catalyzing the successive dehydrogenation of aromatic propanols to produce α,β-unsaturated aldehydes. This method has the advantages of high efficiency, simple operation, and oxygen as an oxidant. The reaction mechanism of continuous dehydrogenation of aromatic propanols was investigated by in situ infrared spectroscopy and control experiments. The dehydrogenation process suggested that phenylpropanol was first oxidized to arylpropanals and then underwent α,β-selective dehydrogenation of the carbonyl group to yield α,β-unsaturated aldehydes. This protocol provides insights into the design and synthesis of efficient catalysts for the preparation of α,β-unsaturated aldehydes by continuous dehydrogenation of aromatic propanols.
Collapse
Affiliation(s)
- Yang-Yang Shen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Xiao-Bin Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Zhi-Hong Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Chun-Bo Bo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Min Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| |
Collapse
|
2
|
Wang Y, Du ZH, Bo C, Li M, Chen F, Liu N. Synthesis of α,β-Unsaturated Carbonyl Compounds via Cu/TEMPO/O 2 Aerobic Catalytic System. Chemistry 2025; 31:e202403950. [PMID: 39780202 DOI: 10.1002/chem.202403950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
An N,N,N-type Cu(II) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(II) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance. Notably, H2O is the byproduct produced and overoxidation is not observed during the reaction process. The proposed mechanism was investigated via high-resolution mass spectrometry (HRMS), in situ FT-IR spectrometry, and GC analysis, and the formation of intermediates of α,β-unsaturated carbonyl compounds from the aerobic dehydrogenation of α,β-saturated counterparts was observed.
Collapse
Affiliation(s)
- Yao Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Zhi-Hong Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Chunbo Bo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Min Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| |
Collapse
|
3
|
Yi P, Wu Y, Wang J, Liu Q, Xing Y, Lu Y, Ma C, Duan L, Zhao J, Meng Q. Photocatalytic acceptorless dehydrogenation of flavanones by cationic Eosin Y as a bifunctional catalyst. Org Biomol Chem 2025; 23:1574-1580. [PMID: 39760133 DOI: 10.1039/d4ob01759e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We report the first example of photocatalytic acceptorless dehydrogenation using cationic Eosin Y as a bifunctional photocatalyst, without metal catalysts or HAT reagents. Under Bayesian optimized conditions, a wide range of flavones were synthesized in moderate to excellent yields, many of which were reported with biological activities. Mechanistic studies suggest that flavones likely form through two HAT processes, with hydrogen release occurring via photoredox.
Collapse
Affiliation(s)
- Peiyu Yi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yufeng Wu
- State Key Laboratory of Fine Chemicals, Liaoning Provincial Key Laboratory of Chemical Safety and Emergency Technology, Department of Chemical Machinery and Safety, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Juntao Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qilei Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yafeng Xing
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liyuan Duan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| |
Collapse
|
4
|
Templ J, Schnürch M. High-Energy Ball Milling Enables an Ultra-Fast Wittig Olefination Under Ambient and Solvent-free Conditions. Angew Chem Int Ed Engl 2024; 63:e202411536. [PMID: 39207262 DOI: 10.1002/anie.202411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
30 Seconds to success!-The Wittig reaction, a fundamental and extensively utilized reaction in organic chemistry, enables the efficient conversion of carbonyl compounds to olefins using phosphonium salts. Traditionally, meticulous reaction setup, including the pre-formation of a reactive ylide species via deprotonation of a phosphonium salt, is crucial for achieving high-yielding reactions under classical solution-based conditions. In this report, we present an unprecedented protocol for an ultra-fast mechanically induced Wittig reaction under solvent-free and ambient conditions, often eliminating the need for tedious ylide pre-formation under strict air and moisture exclusion. A range of aldehydes and ketones were reacted with diverse phosphonium salts under high-energy ball milling conditions, frequently giving access to the respective olefins in only 30 seconds.
Collapse
Affiliation(s)
- Johanna Templ
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/E163, 1060, Vienna, Austria
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/E163, 1060, Vienna, Austria
| |
Collapse
|
5
|
Li J, Du L, Guo S, Chang J, Wu D, Jiang K, Gao Z. Molybdenum iron carbide-copper hybrid as efficient electrooxidation catalyst for oxygen evolution reaction and synthesis of cinnamaldehyde/benzalacetone. J Colloid Interface Sci 2024; 673:616-627. [PMID: 38897063 DOI: 10.1016/j.jcis.2024.06.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Oxygen evolution reaction (OER) is the efficiency limiting half-reaction in water electrolysis for green hydrogen production due to the 4-electron multistep process with sluggish kinetics. The electrooxidation of thermodynamically more favorable organics accompanied by CC coupling is a promising way to synthesize value-added chemicals instead of OER. Efficient catalyst is of paramount importance to fulfill such a goal. Herein, a molybdenum iron carbide-copper hybrid (Mo2C-FeCu) was designed as anodic catalyst, which demonstrated decent OER catalytic capability with low overpotential of 238 mV at response current density of 10 mA cm-2 and fine stability. More importantly, the Mo2C-FeCu enabled electrooxidation assisted aldol condensation of phenylcarbinol with α-H containing alcohol/ketone in weak alkali electrolyte to selective synthesize cinnamaldehyde/benzalacetone at reduced potential. The hydroxyl and superoxide intermediate radicals generated at high potential are deemed to be responsible for the electrooxidation of phenylcarbinol and aldol condensation reactions to afford cinnamaldehyde/benzalacetone. The current work showcases an electrochemical-chemical combined CC coupling reaction to prepare organic chemicals, we believe more widespread organics can be synthesized by tailored electrochemical reactions.
Collapse
Affiliation(s)
- Jinzhou Li
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Lan'ge Du
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Songtao Guo
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| |
Collapse
|
6
|
Zhao C, Gao R, Ma W, Li M, Li Y, Zhang Q, Guan W, Fu J. A facile synthesis of α,β-unsaturated imines via palladium-catalyzed dehydrogenation. Nat Commun 2024; 15:4329. [PMID: 38773128 PMCID: PMC11109338 DOI: 10.1038/s41467-024-48737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
The dehydrogenation adjacent to an electron-withdrawing group provides an efficient access to α,β-unsaturated compounds that serving as versatile synthons in organic chemistry. However, the α,β-desaturation of aliphatic imines has hitherto proven to be challenging due to easy hydrolysis and preferential dimerization. Herein, by employing a pre-fluorination and palladium-catalyzed dehydrogenation reaction sequence, the abundant simple aliphatic amides are amendable to the rapid construction of complex molecular architectures to produce α,β-unsaturated imines. Mechanistic investigations reveal a Pd(0)/Pd(II) catalytic cycle involving oxidative H-F elimination of N-fluoroamide followed by a smooth α,β-desaturation of the in-situ generated aliphatic imine intermediate. This protocol exhibits excellent functional group tolerance, and even the carbonyl groups are compatible without any competing dehydrogenation, allowing for late-stage functionalization of complex bioactive molecules. The synthetic utility of this transformation has been further demonstrated by a diversity-oriented derivatization and a concise formal synthesis of (±)-alloyohimbane.
Collapse
Affiliation(s)
- Chunyang Zhao
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rongwan Gao
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wenxuan Ma
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Miao Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yifei Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Junkai Fu
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
7
|
Bodnar AK, Szewczyk SM, Sun Y, Chen Y, Huang AX, Newhouse TR. Comprehensive Mechanistic Analysis of Palladium- and Nickel-Catalyzed α,β-Dehydrogenation of Carbonyls via Organozinc Intermediates. J Org Chem 2024; 89:3123-3132. [PMID: 38377547 PMCID: PMC11000628 DOI: 10.1021/acs.joc.3c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Introducing degrees of unsaturation into small molecules is a central transformation in organic synthesis. A strategically useful category of this reaction type is the conversion of alkanes into alkenes for substrates with an adjacent electron-withdrawing group. An efficient strategy for this conversion has been deprotonation to form a stabilized organozinc intermediate that can be subjected to α,β-dehydrogenation through palladium or nickel catalysis. This general reactivity blueprint presents a window to uncover and understand the reactivity of Pd- and Ni-enolates. Within this context, it was determined that β-hydride elimination is slow and proceeds via concerted syn-elimination. One interesting finding is that β-hydride elimination can be preferred to a greater extent than C-C bond formation for Ni, more so than with Pd, which defies the generally assumed trends that β-hydride elimination is more facile with Pd than Ni. The discussion of these findings is informed by KIE experiments, DFT calculations, stoichiometric reactions, and rate studies. Additionally, this report details an in-depth analysis of a methodological manifold for practical dehydrogenation and should enable its application to challenges in organic synthesis.
Collapse
Affiliation(s)
- Alexandra K Bodnar
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Suzanne M Szewczyk
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yang Sun
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yifeng Chen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Anson X Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
8
|
Wu LH, Liu X, Liu ZW, Chen ZX, Fu XL, Yang K. Metal-free synthesis of difluoro/trifluoromethyl carbinol-containing chromones via tandem cyclization of o-hydroxyaryl enaminones. Org Biomol Chem 2023; 21:9236-9241. [PMID: 37966029 DOI: 10.1039/d3ob01582c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We herein propose a HFIP-promoted tandem cyclization reaction for the synthesis of difluoro/trifluoromethyl carbinol-containing chromones from o-hydroxyphenyl enaminones at room temperature. This protocol provides a facile and efficient approach to access diverse difluoro/trifluoromethylated carbinols in good to excellent yields. In addition, gram-scale and synthetic derivatization experiments have also been performed.
Collapse
Affiliation(s)
- Long-Hui Wu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Xia Liu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Zhao-Wen Liu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Zhi-Xi Chen
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Xin-Lei Fu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Kai Yang
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| |
Collapse
|
9
|
Wen C, Li T, Huang Z, Kang QK. Oxidative Dehydrogenation of Alkanes through Homogeneous Base Metal Catalysis. CHEM REC 2023; 23:e202300146. [PMID: 37283443 DOI: 10.1002/tcr.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Preparing valuable olefins from cheap and abundant alkane resources has long been a challenging task in organic synthesis, which mainly suffers from harsh reaction conditions and narrow scopes. Homogeneous transition metals catalyzed dehydrogenation of alkanes has attracted much attention for its excellent catalytic activities under relatively milder conditions. Among them, base metal catalyzed oxidative alkane dehydrogenation has emerged as a viable strategy for olefin synthesis for its usage of cheap catalysts, compatibility with various functional groups, and low reaction temperature. In this review, we discuss recent development of base metal catalyzed alkane dehydrogenation under oxidative conditions and their application in constructing complex molecules.
Collapse
Affiliation(s)
- Chenxi Wen
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ting Li
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zheng Huang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi-Kai Kang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
10
|
Schwengers SA, Gerosa GG, Amatov T, Yasukawa N, Brunen S, Leutzsch M, Mitschke B, Shevchenko GA, List B. Direct Regioselective Dehydrogenation of α-Substituted Cyclic Ketones. Angew Chem Int Ed Engl 2023; 62:e202307081. [PMID: 37337974 DOI: 10.1002/anie.202307081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
We disclose a highly regioselective, catalytic one-step dehydrogenation of α-substituted cyclic ketones in the presence of 2,3-dichlorobenzo-5,6-dicyano-1,4-benzoquinone (DDQ). The high regioselectivity originates from a phosphoric acid-catalyzed enolization, selectively affording the thermodynamically preferred enol, followed by the subsequent oxidation event. Our method provides reliable access to several α-aryl and α-alkyl substituted α,β-unsaturated ketones.
Collapse
Affiliation(s)
| | | | - Tynchtyk Amatov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Naoki Yasukawa
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sebastian Brunen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Grigory André Shevchenko
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Shalaby MA, Rizk SA, Fahim AM. Synthesis, reactions and application of chalcones: a systematic review. Org Biomol Chem 2023; 21:5317-5346. [PMID: 37338020 DOI: 10.1039/d3ob00792h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chalcones are a group of naturally occurring compounds that have biological effects that include anti-inflammatory, anti-cancer, and antibacterial properties. Current chalcone research, including their synthesis, structure-activity relationships, and biological activities, is summarized herein. Along with their toxicity and safety profiles, the prospective usage of chalcones in medicinal research and development is discussed. This review emphasizes the need for additional research in order to fully examine the therapeutic potential of chalcones as therapeutic agents for the treatment of a variety of disorders.
Collapse
Affiliation(s)
- Mona A Shalaby
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, P.O. 11566, Cairo, Egypt
| | - Sameh A Rizk
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, P.O. 11566, Cairo, Egypt
| | - Asmaa M Fahim
- Green Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, Cairo, Egypt.
| |
Collapse
|
12
|
Chen Z, Li H, Liao Y, Wang M, Su W. Direct synthesis of alkylated 4-hydroxycoumarin derivatives via a cascade Cu-catalyzed dehydrogenation/conjugate addition sequence. Chem Commun (Camb) 2023; 59:6686-6689. [PMID: 37183637 DOI: 10.1039/d3cc01960h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An efficient approach for the direct synthesis of alkylated 4-hydroxycoumarin derivatives via a Cu-catalyzed cascade dehydrogenation/conjugate addition sequence starting from simple saturated ketones and 4-hydroxycoumarins has been developed. This protocol features excellent functional-group tolerance, easy scale-up, and a broad substrate scope including bioactive molecules. More importantly, a series of marketed drugs, such as warfarin, acenocoumarol, coumachlor, and coumafuryl, can be obtained by this method.
Collapse
Affiliation(s)
- Zhiliang Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Hongyi Li
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yanjing Liao
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Mengqi Wang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
13
|
Zhao H, Caldora HP, Turner O, Douglas JJ, Leonori D. A Desaturative Approach for Aromatic Aldehyde Synthesis via Synergistic Enamine, Photoredox and Cobalt Triple Catalysis. Angew Chem Int Ed Engl 2022; 61:e202201870. [PMID: 35196413 PMCID: PMC9311220 DOI: 10.1002/anie.202201870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 11/05/2022]
Abstract
Aromatic aldehydes are fundamental intermediates that are widely utilised for the synthesis of important materials across the broad spectrum of chemical industries. Accessing highly substituted derivatives can often be difficult as their functionalizations are generally performed via electrophilic aromatic substitution, SEAr. Here we provide an alternative and mechanistically distinct approach whereby aromatic aldehydes are assembled from saturated precursors via a desaturative process. This novel strategy harnesses the high‐fidelity of Diels–Alder cycloadditions to quickly construct multi‐substituted cyclohexenecarbaldehyde cores which undergo desaturation via the synergistic interplay of enamine, photoredox and cobalt triple catalysis.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Henry P Caldora
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Oliver Turner
- Oncology R&DI Medicinal Chemistry, AstraZeneca, Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences R&D, AstraZeneca, Macclesfield, UK
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| |
Collapse
|
14
|
Zhao H, Caldora HP, Turner O, Douglas JJ, Leonori D. A Desaturative Approach for Aromatic Aldehyde Synthesis via Synergistic Enamine, Photoredox and Cobalt Triple Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Henry P. Caldora
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Oliver Turner
- Oncology R&DI Medicinal Chemistry, AstraZeneca Darwin Building, Unit 310, Cambridge Science Park, Milton Road Cambridge CB4 0WG UK
| | - James J. Douglas
- Early Chemical Development, Pharmaceutical Sciences R&D AstraZeneca Macclesfield UK
| | - Daniele Leonori
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52056 Aachen Germany
| |
Collapse
|
15
|
Huang L, Zheng L, Zhou Z, Chen Y. Copper-catalyzed multiple oxidation and cycloaddition of aryl-alkyl ketones (alcohols) for the synthesis of 4-acyl- and 4-diketo-1,2,3-triazoles. Chem Commun (Camb) 2022; 58:3342-3345. [PMID: 35188148 DOI: 10.1039/d1cc06477k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu/TEMPO-catalyzed tandem multiple oxidative dehydrogenation and cycloaddition has been developed, which affords 4-acyl-1,2,3-triazoles and 4-diketo-1,2,3-triazoles from readily-available aryl-alkyl ketones (or alcohols) and different organic azides. Moreover, the reaction used environmentally friendly dimethyl carbonate (DMC) as the solvent and air as the oxidant, and H2O was the only by-product, so it provides a green and practical synthetic method for 1,2,3-triazoles.
Collapse
Affiliation(s)
- Liangfeng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Lei Zheng
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhongzhen Zhou
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
16
|
Wang A, Liu YZ, Shen Z, Qiao Z, Ma X. Regioselective Synthesis of Pyrazolo[1,5- a]pyridine via TEMPO-Mediated [3 + 2] Annulation-Aromatization of N-Aminopyridines and α,β-Unsaturated Compounds. Org Lett 2022; 24:1454-1459. [PMID: 35166547 DOI: 10.1021/acs.orglett.2c00035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A TEMPO-mediated [3 + 2] annulation-aromatization protocol for the preparation of pyrazolo[1,5-a]pyridines from N-aminopyridines and α,β-unsaturated compounds was developed. The procedure offered multisubstituted pyrazolo[1,5-a]pyridines in good to excellent yield with high and predictable regioselectivity. The modification of marketed drugs including Loratadine, Abiraterone, and Metochalcone, and a one-pot three-step gram scale synthesis of key intermediate for the preparation of Selpercatinib were demonstrated. Mechanism studies show that TEMPO serves both as a Lewis acid and as an oxidant.
Collapse
Affiliation(s)
- Amu Wang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ya-Zhou Liu
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Zhongke Shen
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zeen Qiao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| |
Collapse
|
17
|
Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63876-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Sun K, Shan H, Ma R, Wang P, Neumann H, Lu GP, Beller M. Catalytic oxidative dehydrogenation of N-heterocycles with nitrogen/phosphorus co-doped porous carbon materials. Chem Sci 2022; 13:6865-6872. [PMID: 35774164 PMCID: PMC9200114 DOI: 10.1039/d2sc01838a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
A metal-free oxidative dehydrogenation of N-heterocycles utilizing a nitrogen/phosphorus co-doped porous carbon (NPCH) catalyst is reported. The optimal material is robust against traditional poisoning agents and shows high antioxidant resistance. It exhibits good catalytic performance for the synthesis of various quinoline, indole, isoquinoline, and quinoxaline ‘on-water’ under air atmosphere. The active sites in the NPCH catalyst are proposed to be phosphorus and nitrogen centers within the porous carbon network. Green oxidations made easy. Metal-free dehydrogenation of N-heterocycles are possible in using N,P-co-doped porous carbon materials “on” water using air.![]()
Collapse
Affiliation(s)
- Kangkang Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Hongbin Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Rui Ma
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Peng Wang
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Helfried Neumann
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Matthias Beller
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
19
|
Liu JJ, Guo FH, Cui FJ, Zhu JH, Liu XY, Ullah A, Wang XC, Quan ZJ. A biomass-derived N-doped porous carbon catalyst for the aerobic dehydrogenation of nitrogen heterocycles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05411b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-doped porous carbon (NC) was synthesized from sugar cane bagasse, which is a sustainable and widely available biomass waste.
Collapse
Affiliation(s)
- Jing-Jiang Liu
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
- Gansu Police Vocational College, Lanzhou, Gansu 730046, China
| | - Fu-Hu Guo
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Fu-Jun Cui
- Gansu Police Vocational College, Lanzhou, Gansu 730046, China
| | - Ji-Hua Zhu
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Xiao-Yu Liu
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Arif Ullah
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
20
|
Li SJ, Fang W, Richardson JO, Fang DC. Tunnelling assisted hydrogen elimination mechanisms of FeCl 3/TEMPO. Chem Commun (Camb) 2021; 58:565-568. [PMID: 34909806 DOI: 10.1039/d1cc06035j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metal-TEMPO hybrids are a family of novel and promising catalysts for aerobic oxidation of alcohols, yet the underlying mechanisms have not been understood theoretically. Using density functional theory, we probe the hydrogen abstraction mechanisms of FeCl3/TEMPO on two characteristic substrates, 9,10-dihydroanthracene and benzyl alcohol. We found that the low spin state of FeCl3/TEMPO is more favourable, and that the N atom is the preferred hydrogen acceptor. Moreover, dispersion interactions assist the reaction, as well as nuclear tunnelling, which even at room temperature can speed up the process by almost two orders of magnitude. We also predict that pronounced kinetic isotope effects (KIE) could be observed due to tunnelling. Our findings provide insights into improving the substrate scope and the development of new transformations for the FeCl3/TEMPO system.
Collapse
Affiliation(s)
- Shi-Jun Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China. .,Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Wei Fang
- Laboratory for Physical Chemistry, ETH Zurich, Zurich 8093, Switzerland. .,State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | | | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
21
|
Zhang M, Gao J, Zhao J, Qiu T, Li Z, Guo Z, Liu C, Liu Y. Lewis Acid Catalyzed Ring‐Opening Reaction of Cyclobutanones towards Conjugated Enones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min Zhang
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P. R. China
| | - Jiqiang Gao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P. R. China
| | - Jinbo Zhao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P. R. China
| | - Tingtian Qiu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P. R. China
| | - Zhongjuan Li
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P. R. China
| | - Ziteng Guo
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P. R. China
| | - Chunhui Liu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province Department Institute of Surface Micro and Nano Materials Institution, College of Chemical and Materials Engineering Xuchang University Xuchang Henan 461000 P. R. China
| | - Yu Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application College of Chemistry and Life Science, Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 P. R. China
| |
Collapse
|
22
|
Yang T, Nie ZW, Su MD, Li H, Luo WP, Liu Q, Guo CC. Unexpected Annulation between 2-Aminobenzyl Alcohols and Benzaldehydes in the Presence of DMSO: Regioselective Synthesis of Substituted Quinolines. J Org Chem 2021; 86:15228-15241. [PMID: 34632772 DOI: 10.1021/acs.joc.1c01850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unexpected annulation among 2-aminobenzyl alcohols, benzaldehydes, and DMSO to quinolines has been disclosed. For the reported annulation between 2-aminobenzyl alcohols and benzaldehydes, the change of the solvent from toluene to DMSO led to the change of the product from the diheteroatomic cyclic benzoxazines to monoheteroatomic cyclic quinolines. This annulation can be used to synthesize regioselectively different substituted quinolines by the choice of different 2-amino alcohols, aldehydes, and sulfoxides as substrates. Interestingly, introducing substituent groups to the α-position of sulfoxides resulted in the interchange of the positions between benzaldehydes and sulfoxides in the product quinolines. On the basis of the control experiments and literatures, a plausible mechanism for this annulation was proposed.
Collapse
Affiliation(s)
- Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhi-Wen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Miao-Dong Su
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei-Ping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Can-Cheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David Bernhardson
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Aran K. Hubbell
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
24
|
Niu X, Yang L. Manganese(III) Acetate Catalyzed Aerobic Dehydrogenation of Tertiary Indolines, Tetrahydroquinolines and an
N
‐Unsubstituted Indoline. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
| | - Lei Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou People's Republic of China
| |
Collapse
|
25
|
Bettencourt CJ, Chow S, Moore PW, Read CDG, Jiao Y, Bakker JP, Zhao S, Bernhardt PV, Williams CM. Tandem Oxidation-Dehydrogenation of (Hetero)Arylated Primary Alcohols via Perruthenate Catalysis. Aust J Chem 2021. [DOI: 10.1071/ch21137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tandem oxidative-dehydrogenation of primary alcohols to give α,β-unsaturated aldehydes in one pot are rare transformations in organic synthesis, with only two methods currently available. Reported herein is a novel method using the bench-stable salt methyltriphenylphosphonium perruthenate (MTP3), and a new co-oxidant NEMO·PF6 (NEMO = N-ethyl-N-hydroxymorpholinium) which provides unsaturated aldehydes in low to moderate yields. The Ley-Griffith oxidation of (hetero)arylated primary alcohols with N-oxide co-oxidants NMO (NMO = N-methylmorpholine N-oxide)/NEMO, is expanded by addition of the N-oxide salt NEMO·PF6 to convert the intermediate saturated aldehyde into its unsaturated counterpart. The discovery, method development, reaction scope, and associated challenges of this method are highlighted. The conceptual value of late-stage dehydrogenation in natural product synthesis is demonstrated via the synthesis of a polyene scaffold related to auxarconjugatin B.
Collapse
|
26
|
Liu J, Zhang S, Luan Z, Liu Y, Ke Z. Ruthenium Catalyzed Selective Acceptorless Dehydrogenation of Allylic Alcohols to α, β-Unsaturated Carbonyls. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|