1
|
Stein C, Tyler JL, Wiener J, Boser F, Daniliuc CG, Glorius F. Anomeric Amide-Enabled Alkene-Arene and Alkene-Alkene Aminative Coupling. Angew Chem Int Ed Engl 2025; 64:e202418141. [PMID: 39607360 DOI: 10.1002/anie.202418141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Despite the prominence of C-N bond forming cross-coupling reactions as a strategy to assemble molecular fragments, aminative coupling approaches, in which two fragments are assembled directly at the heteroatom, represents a rarely exploited retrosynthetic strategy. Herein, we report the design, synthesis, and implementation of an anomeric amide reagent capable of promoting highly regioselective aminative alkene-arene and alkene-alkene coupling reactions. This transformation follows a sequence of catalyst-free chloroamination, N-deprotection, and formal nitrene functionalization, all in one-pot. Due to the simplicity of both the protocol and the building blocks required, high-throughput experimentation (HTE) was employed, in combination with a full-scale scope, to rapidly and efficiently explore a wide range of chemical space and determine the limits of reactivity. In addition, alternative reactivity modes from the functionalized intermediates delivered by this protocol demonstrate the divergent nature of this aminative coupling strategy.
Collapse
Affiliation(s)
- Colin Stein
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Jasper L Tyler
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Julius Wiener
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Florian Boser
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster
| |
Collapse
|
2
|
Pozhydaiev V, Al-Othman D, Moran J, Lebœuf D. A povarov-type reaction to access tetrahydroquinolines from N-benzylhydroxylamines and alkenes in HFIP. Chem Commun (Camb) 2024; 60:10504-10507. [PMID: 39234917 DOI: 10.1039/d4cc04014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Here, we report the synthesis of tetrahydroquinolines between newly developed N-benzylhydroxylamine reagents and alkenes using HFIP as a solvent. This transformation is notably applicable to highly electronically deactivated styrenes and aliphatic alkenes, expanding the range of tetrahydroquinolines attainable.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| | - Daniella Al-Othman
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
3
|
Botlik BB, Weber M, Ruepp F, Kawanaka K, Finkelstein P, Morandi B. Streamlining the Synthesis of Pyridones through Oxidative Amination of Cyclopentenones. Angew Chem Int Ed Engl 2024; 63:e202408230. [PMID: 38934574 DOI: 10.1002/anie.202408230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Herein we report the development of an oxidative amination process for the streamlined synthesis of pyridones from cyclopentenones. Cyclopentenone building blocks can undergo in situ silyl enol ether formation, followed by the introduction of a nitrogen atom into the carbon skeleton with successive aromatisation to yield pyridones. The reaction sequence is operationally simple, rapid, and carried out in one pot. The reaction proceeds under mild conditions, exhibits broad functional group tolerance, complete regioselectivity, and is well scalable. The developed method provides facile access to the synthesis of 15N-labelled targets, industrially relevant pyridone products and their derivatives in a fast and efficient way.
Collapse
Affiliation(s)
- Bence B Botlik
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Micha Weber
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Florian Ruepp
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Kazuki Kawanaka
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| |
Collapse
|
4
|
Wang P, Lin L, Huang Y, Zhang H, Liao S. Radical Fluorosulfonamidation: A Facile Access to Sulfamoyl Fluorides. Angew Chem Int Ed Engl 2024; 63:e202405944. [PMID: 38837324 DOI: 10.1002/anie.202405944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Recently, the introduction of fluorosulfonyl (-SO2F) groups have attracted considerable research interests, as this moiety could often afford enhanced activities and new functions in the context of chemical biology and drug discovery. Herein, we report the design and synthesis of 1-fluorosulfamoyl-pyridinium (FSAP) salts, which could serve as an effective photoredox-active precursor to fluorosulfamoyl radicals and enable the direct radical C-H fluorosulfonamidation of a variety of (hetero)arenes. This method features mild conditions, visible light, broad substrate scope, good group tolerance, etc., and a metal-free protocol is also viable by using organic photocatalysts. Further, FSAP can also be applied to the radical functionalization of alkenes via 1,2-difunctionalization, radical distal migration, tandem radical-polar crossover reactions, etc. In addition, a formal C-H methylamination of (hetero)arenes by combining this radical C-H fluorosulfonamidation with subsequent hydrolysis as well as product derivatization are also demonstrated.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yao Huang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Pratley C, Fenner S, Murphy JA. Ground State Generation and Cyclization of Aminium Radicals in the Formation of Tetrahydroquinolines. Org Lett 2024; 26:1287-1292. [PMID: 38306472 PMCID: PMC10877599 DOI: 10.1021/acs.orglett.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
This paper reports the first examples of ground state radical-mediated intramolecular C-H amination to afford 1-methyl-1,2,3,4-tetrahydroquinolines from N-2,4-dinitrophenoxy derivatives of arylpropylamines. Whereas the photoactivation of N-2,4-dinitrophenoxyamines for intermolecular reactions has been established, ground state chemistry provides the desired cyclization products in moderate to excellent yields using Ru(bpy)3Cl2 (42-95% yields) under acidic conditions under an air atmosphere.
Collapse
Affiliation(s)
- Cassie Pratley
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
- GSK Medicines
Research Centre, Gunnels
Wood Road, Stevenage, Hertfordshire SG1 2NY, United
Kingdom
| | - Sabine Fenner
- GSK Medicines
Research Centre, Gunnels
Wood Road, Stevenage, Hertfordshire SG1 2NY, United
Kingdom
| | - John A. Murphy
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
6
|
Gillespie JE, Lam NYS, Phipps RJ. Ortho-Selective amination of arene carboxylic acids via rearrangement of acyl O-hydroxylamines. Chem Sci 2023; 14:10103-10111. [PMID: 37772106 PMCID: PMC10530477 DOI: 10.1039/d3sc03293k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Direct amination of arene C-H bonds is an attractive disconnection to form aniline-derived building blocks. This transformation presents significant practical challenges; classical methods for ortho-selective amination require strongly acidic or forcing conditions, while contemporary catalytic processes often require bespoke directing groups and/or precious metal catalysis. We report a mild and procedurally straightforward ortho-selective amination of arene carboxylic acids, arising from a facile rearrangement of acyl O-hydroxylamines without requiring precious metal catalysts. A broad scope of benzoic acid substrates are compatible and the reaction can be applied to longer chain arene carboxylic acids. Mechanistic studies probe the specific requirement for trifluoroacetic acid in generating the active aminating agent, and suggest that two separate mechanisms may be operating in parallel in the presence of an iron catalyst: (i) an iron-nitrenoid intermediate and (ii) a radical chain pathway. Regardless of which mechanism is followed, high ortho selectivity is obtained, proposed to arise from the directivity (first) or attractive interactions (second) arising with the carboxylic acid motif.
Collapse
Affiliation(s)
- James E Gillespie
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
7
|
Sirvinskaite G, Nardo CS, Müller P, Gasser AC, Morandi B. Direct Synthesis of Unprotected Indolines Through Intramolecular sp 3 C-H Amination Using Nitroarenes as Aryl Nitrene Precursors. Chemistry 2023; 29:e202301978. [PMID: 37404217 DOI: 10.1002/chem.202301978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Given the prevalence of molecules containing nitro groups in organic synthesis, innovative methods to expand the reactivity of this functional group are of interest in both industrial and academic settings. In this report, a metal-free intramolecular benzylic sp3 C-H amination is disclosed using aryl nitro compounds as aryl nitrene precursors. Organosilicon reagent N,N'-bis(trimethylsilyl)-4,4'-bipyridinylidene (Si-DHBP) served as an efficient reductant in the transformation, enabling the in situ generation of aryl nitrene species for the direct, metal-free synthesis of unprotected 2-arylindolines from the corresponding nitroarene compounds.
Collapse
Affiliation(s)
- Giedre Sirvinskaite
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Celine S Nardo
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Aurelio C Gasser
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
8
|
Wang J, Shi D, Wang Z, Ren F, Li X, You Y, Liu X, Lou Y. A Scalable and Metal-Free Synthesis of Indazoles from 2-Aminophenones and In Situ Generated De-Boc-Protected O-Mesitylsulfonyl Hydroxylamine Derivatives. J Org Chem 2023; 88:13049-13056. [PMID: 37647210 DOI: 10.1021/acs.joc.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A one-pot metal-free protocol to access indazoles from easily available 2-aminophenones and hydroxylamine derivatives has been achieved. The reaction is operationally simple, mild, and insensitive to air and moisture. A broad range of indazoles were prepared in good to excellent yield (up to 97% yield), and the reaction displayed a broad functional group tolerance. The reaction was performed at gram scale, and its synthetic application was exhibited through the rapid and efficient preparation of bioactive molecule YC-3 and FDA-approved drug axitinib.
Collapse
Affiliation(s)
- Jinlong Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Dongmin Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zihao Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Fucai Ren
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xin Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yazhou Lou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
9
|
Behnke NE, Kwon YD, Davenport MT, Ess DH, Kürti L. Directing-Group-Free Arene C(sp 2)-H Amination Using Bulky Aminium Radicals and DFT Analysis of Regioselectivity. J Org Chem 2023; 88:11847-11854. [PMID: 37506352 PMCID: PMC10802973 DOI: 10.1021/acs.joc.3c01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
A hydroxylamine-derived electrophilic aminating reagent produces a transient and bulky aminium radical intermediate upon in situ activation by either TMSOTf or TFA and a subsequent electron transfer from an iron(II) catalyst. Density functional theory calculations were used to examine the regioselectivity of arene C-H amination reactions on diversely substituted arenes. The calculations suggest a simple charge-controlled regioselectivity model that enables prediction of the major C(sp2)-H amination product.
Collapse
Affiliation(s)
| | - Young-Do Kwon
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
| | - Michael T. Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - László Kürti
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Zhuang D, Jiang S, Wang Y, Wang X, Shen S, Yan R. I 2-Mediated [6 + 1] Annulation of Alkynes with MsONH 3OTf: Direct Synthesis of Benzo[ b]azepines. Org Lett 2023; 25:3007-3012. [PMID: 37083284 DOI: 10.1021/acs.orglett.3c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The synthesis of benzo[b]azepines using protonated aminating reagent (MsONH3OTf) and alkynes through I2-mediated [6 + 1] annulation reaction has been developed. This protocol features excellent functional group tolerance and mild reaction conditions and affords the benzo[b]azepines in moderate to good yields under metal-free reaction conditions.
Collapse
Affiliation(s)
- Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Youzhi Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu, 610041 Sichuan, China
| | - Xiajun Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu, 610041 Sichuan, China
| | - Siwei Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| |
Collapse
|
11
|
Falk E, Franchino A, Horak T, Gürtler L, Morandi B. Azide-Free Synthesis of N-Alkyliminophosphoranes from Phosphines and Hydroxylamine Derivatives. Org Lett 2023; 25:1695-1700. [PMID: 36926926 DOI: 10.1021/acs.orglett.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A broadly applicable and efficient method for the synthesis of N-alkyliminophosphoranes from phosphines that does not use potentially hazardous alkyl azides is reported. Under iron catalysis, a hydroxylamine-derived triflic acid salt oxidizes phosphines to a wide range of iminophosphorane triflic acid salts. Diphosphines afford phosphine-iminophosphoranes that can serve as ligands in transition metal complexes. The developed method can be employed in the synthesis of mixed diiminophosphoranes and in a traceless Staudinger ligation.
Collapse
Affiliation(s)
- Eric Falk
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Allegra Franchino
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Teresa Horak
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Laura Gürtler
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Pozhydaiev V, Vayer M, Fave C, Moran J, Lebœuf D. Synthesis of Unprotected β-Arylethylamines by Iron(II)-Catalyzed 1,2-Aminoarylation of Alkenes in Hexafluoroisopropanol. Angew Chem Int Ed Engl 2023; 62:e202215257. [PMID: 36541580 DOI: 10.1002/anie.202215257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
β-Arylethylamines are prevalent structural motifs in molecules exhibiting biological activity. Here we report a sequential one-pot protocol for the 1,2-aminoarylation of alkenes with hydroxylammonium triflate salts and (hetero)arenes. Unlike existing methods, this reaction provides a direct entry to unprotected β-arylethylamines with remarkable functional group tolerance, allowing key drug-oriented functional groups to be installed in a two-step process. The use of hexafluoroisopropanol as a solvent in combination with an iron(II) catalyst proved essential to reaching high-value nitrogen-containing molecules.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Marie Vayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, 75013, Paris, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
13
|
Bogdos MK, Müller P, Morandi B. Structural Evidence for Aromatic Heterocycle N–O Bond Activation via Oxidative Addition. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michael K. Bogdos
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Van Emelen L, Lemmens V, Marquez C, Van Minnebruggen S, Usoltsev OA, Bugaev AL, Janssens K, Cheung KY, Van Velthoven N, De Vos DE. Cu-α-diimine Compounds Encapsulated in Porous Materials as Catalysts for Electrophilic Amination of Aromatic C-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51867-51880. [PMID: 36349551 DOI: 10.1021/acsami.2c13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrophilic amination has emerged as a more environmentally benign approach to construct arene C-N bonds. However, heterogeneous catalysts remain largely unexplored in this area, even though their use could facilitate product purification and catalyst recovery. Here we investigate strategies to heterogenize a Cu(2,2'-bipyridine) catalyst for the amination of arenes lacking a directing group with hydroxylamine-O-sulfonic acid (HOSA). Besides immobilization of Cu on a metal-organic framework (MOF) or covalent organic framework (COF) with embedded 2,2'-bipyridines, a ship-in-a-bottle approach was followed in which the Cu complex is encapsulated in the pores of a zeolite. Recyclability and hot centrifugation tests show that zeolite Beta-entrapped CuII(2,2'-bipyridine) is superior in terms of stability. With N-methylmorpholine as a weakly coordinating, weak base, simple arenes, such as mesitylene, could be aminated with yields up to 59%, corresponding to a catalyst TON of 24. The zeolite could be used in three consecutive runs without a decrease in activity. Characterization of the catalyst by EPR and XAS showed that the active catalytic complex consisted of a site-isolated CuII species with one 2,2'-bipyridine ligand.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Vincent Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Carlos Marquez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Sam Van Minnebruggen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Oleg A Usoltsev
- The Smart Materials Research Institute at the Southern Federal University, Sladkova 178/24, Rostov-on-Don 344090, Russia
| | - Aram L Bugaev
- The Smart Materials Research Institute at the Southern Federal University, Sladkova 178/24, Rostov-on-Don 344090, Russia
| | - Kwinten Janssens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Ka Yan Cheung
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Niels Van Velthoven
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| |
Collapse
|
15
|
Gasser VCM, Makai S, Morandi B. The advent of electrophilic hydroxylamine-derived reagents for the direct preparation of unprotected amines. Chem Commun (Camb) 2022; 58:9991-10003. [PMID: 35993918 PMCID: PMC9453917 DOI: 10.1039/d2cc02431d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Electrophilic aminating reagents have seen a renaissance in recent years as effective nitrogen sources for the synthesis of unprotected amino functionalities. Based on their reactivity, several noble and non-noble transition metal catalysed amination reactions have been developed. These include the aziridination and difunctionalisation of alkenes, the amination of arenes as well as the synthesis of aminated sulfur compounds. In particular, the use of hydroxylamine-derived (N-O) reagents, such as PONT (PivONH3OTf), has enabled the introduction of unprotected amino groups on various different feedstock compounds, such as alkenes, arenes and thiols. This strategy obviates undesired protecting-group manipulations and thus improves step efficiency and atom economy. Overall, this feature article gives a recent update on several reactions that have been unlocked by employing versatile hydroxylamine-derived aminating reagents, which facilitate the generation of unprotected primary, secondary and tertiary amino groups.
Collapse
Affiliation(s)
- Valentina C M Gasser
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| |
Collapse
|
16
|
Morrill C, Gillespie JE, Phipps RJ. An Aminative Rearrangement of O-(Arenesulfonyl)hydroxylamines: Facile Access to ortho-Sulfonyl Anilines. Angew Chem Int Ed Engl 2022; 61:e202204025. [PMID: 35703005 PMCID: PMC9546328 DOI: 10.1002/anie.202204025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 12/25/2022]
Abstract
Ortho-sulfonyl anilines are important building blocks for a range of applications. We report the discovery of an aromatic rearrangement reaction of O-(arenesulfonyl)hydroxylamines which leads directly to ortho-sulfonyl anilines through formation of a new C-N bond with excellent levels of regiocontrol for the ortho position(s) over all others. We establish that the rearrangement is proceeding through an intermolecular mechanism and propose that the regiocontrol observed is the result of attractive non-covalent interactions occurring during the C-N bond-forming step. Importantly, this method is complementary to classical aniline sulfonation in terms of the variously substituted regioisomers that can be obtained and it is also applicable to O-(benzylsulfonyl) hydroxylamines.
Collapse
Affiliation(s)
- Charlotte Morrill
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - James E. Gillespie
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Robert J. Phipps
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
17
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
18
|
Morrill C, Gillespie JE, Phipps RJ. An Aminative Rearrangement of O‐(Arenesulfonyl)hydroxylamines: Facile Access to ortho‐Sulfonyl Anilines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Charlotte Morrill
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - James E Gillespie
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - Robert J Phipps
- University of Cambridge Department of Chemistry Lensfield Road CB2 1EW Cambridge UNITED KINGDOM
| |
Collapse
|
19
|
Pratley C, Fenner S, Murphy JA. Nitrogen-Centered Radicals in Functionalization of sp 2 Systems: Generation, Reactivity, and Applications in Synthesis. Chem Rev 2022; 122:8181-8260. [PMID: 35285636 DOI: 10.1021/acs.chemrev.1c00831] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chemistry of nitrogen-centered radicals (NCRs) has plentiful applications in organic synthesis, and they continue to expand as our understanding of these reactive species increases. The utility of these reactive intermediates is demonstrated in the recent advances in C-H amination and the (di)amination of alkenes. Synthesis of previously challenging structures can be achieved by efficient functionalization of sp2 moieties without prefunctionalization, allowing for faster and more streamlined synthesis. This Review addresses the generation, reactivity, and application of NCRs, including, but not limited to, iminyl, aminyl, amidyl, and aminium species. Contributions from early discovery up to the most recent examples have been highlighted, covering radical initiation, thermolysis, photolysis, and, more recently, photoredox catalysis. Radical-mediated intermolecular amination of (hetero)arenes can occur with a variety of complex amine precursors, generating aniline derivatives, an important class of structures for drug discovery and development. Functionalization of olefins is achievable in high anti-Markovnikov regioselectivity and allows access to difunctionalized structures when the intermediate carbon radicals are trapped. Additionally, the reactivity of NCRs can be harnessed for the rapid construction of N-heterocycles such as pyrrolidines, phenanthridines, quinoxalines, and quinazolinones.
Collapse
Affiliation(s)
- Cassie Pratley
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.,GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - Sabine Fenner
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
20
|
Zhuang D, Gatera T, An Z, Yan R. Iron-Catalyzed Ring Expansion of Cyclobutanols for the Synthesis of 1-Pyrrolines by Using MsONH 3OTf. Org Lett 2022; 24:771-775. [PMID: 34985295 DOI: 10.1021/acs.orglett.1c04304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of 1-pyrrolines from cyclobutanol derivatives and an aminating reagent (MsONH3OTf) has been developed. This one-pot procedure achieves C-N bond/C═N bond formation via ring expansion. A series of 1-pyrroline derivatives are synthesized in moderate to good yields under mild conditions.
Collapse
Affiliation(s)
- Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tharcisse Gatera
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhenyu An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Liu S, Zhang Y, Zhao C, Zhou X, Liang J, Zhang P, Jiao LY, Yang X, Ma Y. N-Aroyloxycarbamates as switchable nitrogen and oxygen precursor: Ir/Cu controlled divergent C–H functionalization of heteroarenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01827b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemodivergent control in the functionalization of nitrogen-directed aromatic C–H bonds has been achieved by a switchable catalyst.
Collapse
Affiliation(s)
- Shanshan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yuanyuan Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Chen Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Xianying Zhou
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Jiahui Liang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Pingjun Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Lin-Yu Jiao
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
| | - Xiufang Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| |
Collapse
|
22
|
|
23
|
Chandra D, Yadav AK, Singh V, Tiwari B, Jat JL. Fe(II)‐Catalyzed Synthesis of Unactivated Aziridines (N‐H/N‐Me) from Olefins Using
O
‐Arylsulfonyl Hydroxylamines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dinesh Chandra
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| | - Ajay K. Yadav
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| | - Vikram Singh
- Division of Molecular Synthesis and Drug Discovery Centre of Biomedical Research SGPGIMS Campus Raebareli Road Lucknow 226014 India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis and Drug Discovery Centre of Biomedical Research SGPGIMS Campus Raebareli Road Lucknow 226014 India
| | - Jawahar L. Jat
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| |
Collapse
|
24
|
Qiu X, Wang Y, Su L, Jin R, Song S, Qin Q, Li J, Zong B, Jiao N. Selective
Carbon‐Carbon
Bond Amination with
Redox‐Active
Aminating Reagents: A Direct Approach to Anilines
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Yachong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Lingyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Rui Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, SINOPEC 100083 Beijing China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Qixue Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Junhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Baoning Zong
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, SINOPEC 100083 Beijing China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Shanghai 200062 China
| |
Collapse
|
25
|
Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David Bernhardson
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Aran K. Hubbell
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
26
|
An Z, Wang T, Liu Y, Ren Y, Yan R. A catalyst-free method for the synthesis of 1,4,2-dithiazoles from isothiocyanates and hydroxylamine triflic acid salts. Org Biomol Chem 2021; 19:6206-6209. [PMID: 34195750 DOI: 10.1039/d1ob00938a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free method for the preparation of 1,4,2-dithiazoles is developed by reactions of isothiocyanates with hydroxylamine triflic acid salts. This reaction achieves C-S, C-N, and S-N bond formation, and a range of products are obtained in moderate to good yields. The obvious feature is using shelf-stable hydroxylamine triflic acid salts as a N source to synthesize heterocycles under mild conditions.
Collapse
Affiliation(s)
- Zhenyu An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Ting Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yafeng Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan 750000, China
| | - Yi Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
27
|
Gillespie JE, Morrill C, Phipps RJ. Regioselective Radical Arene Amination for the Concise Synthesis of ortho-Phenylenediamines. J Am Chem Soc 2021; 143:9355-9360. [PMID: 34128670 PMCID: PMC8251697 DOI: 10.1021/jacs.1c05531] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The
formation of arene C–N bonds directly from C–H
bonds is of great importance and there has been rapid recent development
of methods for achieving this through radical mechanisms, often involving
reactive N-centered radicals. A major challenge associated
with these advances is that of regiocontrol, with mixtures of regioisomeric
products obtained in most protocols, limiting broader utility. We
have designed a system that utilizes attractive noncovalent interactions
between an anionic substrate and an incoming radical cation in order
to guide the latter to the arene ortho position.
The anionic substrate takes the form of a sulfamate-protected aniline
and telescoped cleavage of the sulfamate group after amination leads
directly to ortho-phenylenediamines, key building
blocks for a range of medicinally relevant diazoles. Our method can
deliver both free amines and monoalkyl amines allowing access to unsymmetrical,
selectively monoalkylated benzimidazoles and benzotriazoles. As well
as providing concise access to valuable ortho-phenylenediamines,
this work demonstrates the potential for utilizing noncovalent interactions
to control positional selectivity in radical reactions.
Collapse
Affiliation(s)
- James E Gillespie
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Charlotte Morrill
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|