1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Huth SE, Tampellini N, Guerrero MD, Miller SJ. Catalytic Enantioselective Sulfoxidation of Functionalized Thioethers Mediated by Aspartic Acid-Containing Peptides. Org Lett 2024; 26:6872-6877. [PMID: 39102356 PMCID: PMC11329351 DOI: 10.1021/acs.orglett.4c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A peptide-catalyzed enantioselective oxidation of sulfides to yield pharmaceutically relevant chiral sulfoxides is reported. Experimental evidence suggesting that a hydrogen bond-donating moiety must be present in the substrate to achieve high levels of enantioinduction is supported by computational modeling of transition states. These models also indicate that dual points of contact between the peptidic catalyst and substrate are likely responsible for the formation of one desired sulfoxide in 94:6 er.
Collapse
Affiliation(s)
- Susannah E. Huth
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Nicolò Tampellini
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Maria D. Guerrero
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
3
|
Gunasekera S, Pryyma A, Jung J, Greenwood R, Patrick BO, Perrin DM. Diphenylphosphinylhydroxylamine (DPPH) Affords Late-Stage S-imination to access free-NH Sulfilimines and Sulfoximines. Angew Chem Int Ed Engl 2024; 63:e202314906. [PMID: 38289976 DOI: 10.1002/anie.202314906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Sulfilimines, as potential aza-isosteres of sulfoxides, are valued as building blocks, auxiliaries, ligands, bioconjugation handles, and as precursors to versatile S(VI) scaffolds including sulfoximines and sulfondiimines. Here, we report a thioether imination methodology that exploits O-(diphenylphosphinyl)hydroxyl amine (DPPH). Under mild, metal-free, and biomolecule-compatible conditions, DPPH enables late-stage S-imination on peptides, natural products, and a clinically trialled drug, and shows both excellent chemoselectivity and broad functional group tolerance. This methodological report is extended to an efficient and high-yielding one-pot reaction for accessing free-NH sulfoximines with diverse substrates including ones of potential clinical importance. In the presence of a rhodium catalyst, sulfoxides are S-iminated in higher yields to afford free-NH sulfoximines. S-imination was validated on an oxidatively delicate amatoxin to give sulfilimine and sulfoximine congeners. Interestingly, these new sulfilimine and sulfoximine-amatoxins show cytotoxicity. This method is further extended to create sulfilimine and sulfoximine-Fulvestrant and buthionine analogues.
Collapse
Affiliation(s)
- Shanal Gunasekera
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Alla Pryyma
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Jimin Jung
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Rebekah Greenwood
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Brian O Patrick
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| |
Collapse
|
4
|
Gao L, Wang YQ, Zhang YQ, Fu YH, Liu YY, Zhang QW. Nickel-Catalyzed Enantioselective Synthesis of Dienyl Sulfoxide. Angew Chem Int Ed Engl 2023:e202317626. [PMID: 38085222 DOI: 10.1002/anie.202317626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Sulfoxides are widely used in the pharmaceutical industry and as ligands in asymmetric catalysis. However, the efficient asymmetric synthesis of this structural motif remains limited. In this study, we disclosed a Ni-catalyzed enantioconvergent reaction that utilizes both racemic allenyl carbonates and β-sulfinyl esters. Our method employs cheap and more sustainable Ni(II) as a precatalyst and successfully overcomes the challenging poisoning effect and instability of sulfenate generated in situ. This enables the synthesis of a series of dienyl sulfoxides with enantioselectivity of up to 98 % ee. The product exhibits tremendous potential in various applications, including diastereoselective Diels-Alder reactions, coordination with transition metals, and incorporation into medicinal compounds, among others. Using a combination of experimental and computational methods, we have uncovered an interesting associated outersphere mechanism that contrasts with conventional mechanisms commonly observed in asymmetric transition metal catalysis.
Collapse
Affiliation(s)
- Li Gao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yin-Qi Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ya-Qian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Han Fu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Yu Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
5
|
Vicens A, Vicens L, Olivo G, Lanzalunga O, Di Stefano S, Costas M. Site-selective methylene C-H oxidation of an alkyl diamine enabled by supramolecular recognition using a bioinspired manganese catalyst. Faraday Discuss 2023; 244:51-61. [PMID: 37185809 DOI: 10.1039/d2fd00177b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Site-selective oxidation of aliphatic C-H bonds is a powerful synthetic tool because it enables rapid build-up of product complexity and diversity from simple precursors. Besides the poor reactivity of alkyl C-H bonds, the main challenge in this reaction consists in differentiating between the multiple similar sites present in most organic molecules. Herein, a manganese oxidation catalyst equipped with two 18-benzo-6-crown ether receptors has been employed in the oxidation of the long chain tetradecane-1,14-diamine. 1H-NMR studies evidence simultaneous binding of the two protonated amine moieties to the crown ether receptors. This recognition has been used to pursue site-selective oxidation of a methylenic site, using hydrogen peroxide as oxidant in the presence of carboxylic acids as co-ligands. Excellent site-selectivity towards the central methylenic sites (C6 and C7) is observed, overcoming selectivity parameters derived from polar deactivation by simple amine protonation and selectivity observed in the oxidation of related monoprotonated amines.
Collapse
Affiliation(s)
- Arnau Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | - Giorgio Olivo
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| |
Collapse
|
6
|
Garay-Ruiz D, Zonta C, Lovat S, González-Fabra J, Bo C, Licini G. Elucidating Sulfide Activation Mode in Metal-Catalyzed Sulfoxidation Reactivity. Inorg Chem 2022; 61:4494-4501. [PMID: 35226481 PMCID: PMC8924929 DOI: 10.1021/acs.inorgchem.2c00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Interest in the catalytic
activation of peroxides, together with
the requirement of stereoselectivity for the production of enantiopure
sulfoxides, has made sulfoxidation the ideal playground for theoretical
and experimental physical organic chemists investigating oxidation
reactivity. Efforts have been dedicated for elucidating the catalytic
pathway regarding these species and for dissecting out the dominant
factors influencing the yield and stereochemistry. In this article,
Ti(IV) and Hf(IV) aminotriphenolate complexes have been prepared and
investigated as catalysts in the presence of peroxides in sulfide
oxidation. Experimental results have been combined with theoretical
calculations obtaining detailed mechanistic information on oxygen
transfer processes. The study revealed that steric issues are mainly
responsible for the formation of intermediates in the oxidation pathway.
In particular, we could highlight the occurrence of a blended situation
where the steric effects of sulfides, ligands, and oxidants influence
the formation of different intermediates and reaction pathways. Steric issues are mainly responsible
for the formation of
intermediates in the catalytic activation of the peroxide pathway.
In particular, we could highlight the occurrence of a blended situation
where the steric effects of sulfides, ligands, and oxidants influence
the formation of different intermediates and reaction pathways.
Collapse
Affiliation(s)
- Diego Garay-Ruiz
- Barcelona Institute of Science & Technology (BIST), Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova and CIRCC, Padova Unit, via Marzolo 1, 35131 Padova, Italy
| | - Silvia Lovat
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova and CIRCC, Padova Unit, via Marzolo 1, 35131 Padova, Italy
| | - Joan González-Fabra
- Barcelona Institute of Science & Technology (BIST), Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carles Bo
- Barcelona Institute of Science & Technology (BIST), Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Giulia Licini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova and CIRCC, Padova Unit, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
7
|
Vicens L, Olivo G, Costas M. Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angew Chem Int Ed Engl 2022; 61:e202114932. [PMID: 34854188 PMCID: PMC9304166 DOI: 10.1002/anie.202114932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Precise delivery of a proton plays a key role in O2 activation at iron oxygenases, enabling the crucial O-O cleavage step that generates the oxidizing high-valent metal-oxo species. Such a proton is delivered by acidic residues that may either directly bind the iron center or lie in its second coordination sphere. Herein, a supramolecular strategy for enzyme-like H2 O2 activation at a biologically inspired manganese catalyst, with a nearly stoichiometric amount (1-1.5 equiv) of a carboxylic acid is disclosed. Key for this strategy is the incorporation of an α,ω-amino acid in the second coordination sphere of a chiral catalyst via remote ammonium-crown ether recognition. The properly positioned carboxylic acid function enables effective activation of hydrogen peroxide, leading to catalytic asymmetric epoxidation. Modulation of both amino acid and catalyst structure can tune the efficiency and the enantioselectivity of the reaction, and a study on the oxidative degradation pathway of the system is presented.
Collapse
Affiliation(s)
- Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC)Departament de QuímicaUniversitat de GironaCampus Montilivi17071Girona, CataloniaSpain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC)Departament de QuímicaUniversitat de GironaCampus Montilivi17071Girona, CataloniaSpain
- Dipartamento di ChimicaUniversità “La Sapienza” di RomaPiazzale Aldo Moro 500185RomeItaly
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC)Departament de QuímicaUniversitat de GironaCampus Montilivi17071Girona, CataloniaSpain
| |
Collapse
|
8
|
Vicens L, Olivo G, Costas M. Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi 17071 Girona, Catalonia Spain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi 17071 Girona, Catalonia Spain
- Dipartamento di Chimica Università “La Sapienza” di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi 17071 Girona, Catalonia Spain
| |
Collapse
|
9
|
Zheng Y, Wang ZW, Cheng WS, Xie ZZ, He XC, Chen YS, Chen K, Xiang HY, Chen XQ, Yang H. Phosphine-Mediated Morita-Baylis-Hillman-Type/Wittig Cascade: Access to E-Configured 3-Styryl- and 3-(Benzopyrrole/furan-2-yl) Quinolinones. J Org Chem 2022; 87:974-984. [PMID: 34985275 DOI: 10.1021/acs.joc.1c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A phosphine-mediated, well-designed Morita-Baylis-Hillman-type/Wittig cascade for the rapid assembly of a quinolinone framework from benzaldehyde derivatives is developed for the first time. By rationally combining I2/NIS-mediated cyclization, biologically relevant 3-(benzopyrrole/furan-2-yl) quinolinones were facilely synthesized in a one-pot process by starting from 3-styryl-quinolinones bearing an o-hydroxy/amino group, significantly expanding the chemical space of this privileged skeleton. Further utility of this protocol is illustrated by successfully performing this transformation in a catalytic manner through in situ reduction of phosphine oxide by phenylsilane.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Wei Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wen-Shuo Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Shan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|