1
|
Rallabandi J, Mohanty S, Shown I. Ruthenium(ii) catalyzed C-3 site selective alkenylation of indole derivatives via C-H activation. RSC Adv 2024; 14:37788-37796. [PMID: 39601001 PMCID: PMC11589813 DOI: 10.1039/d4ra06210h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
An efficient synthetic method has been developed for C-3 site-selective alkenylation of indole derivatives under ruthenium(ii) catalysis with an ester as a directing group. Besides the presence of two potential C(sp2)-H sites available for functionalization in the substrates, exclusive C3 selectivity was achieved in a selective manner as only mono-functionalized products were formed. The high site selectivity is attributed to the formation of an uncommon six-membered metallacycle intermediate between the ruthenium catalyst and ester directing group, enabled by the selective alkenylation at the C3 position of indole derivatives. This protocol features high site selectivity, operational simplicity, broad substrate scope, and moderate to high yields.
Collapse
Affiliation(s)
- Jithender Rallabandi
- Department of Chemistry, Hindustan Institute of Technology and Science Chennai 603103 India
- Syngene International Ltd Genome Valley Hyderabad Telangana 500078 India
| | | | - Indrajit Shown
- Department of Chemistry, Hindustan Institute of Technology and Science Chennai 603103 India
| |
Collapse
|
2
|
Tan HB, Liu YS, Zhou JY, Cao M, Lei T, Ren SY, Lin CQ, Yang YF, Hu ZL, Xu ZG, Tang DY, Chen ZZ, Qu XY. Tandem Vinylogous Aldol and Intramolecular [2 + 2] Cycloaddition toward Benzocyclobutenes by UV Light Photocatalysis. Org Lett 2024; 26:3304-3309. [PMID: 38587334 DOI: 10.1021/acs.orglett.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A facile and efficient radical tandem vinylogous aldol and intramolecular [2 + 2] cycloaddition reaction for direct synthesis of cyclobutane-containing benzocyclobutenes (BCBs) under extremely mild conditions without using any photocatalysts is reported. This approach exhibited definite compatibility with functional groups and afforded new BCBs with excellent regioselectivity and high yields. Moreover, detailed mechanism studies were carried out both experimentally and theoretically. The readily accessible, low-cost, and ecofriendly nature of the developed strategy will endow it with attractive applications in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Hong-Bo Tan
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Ying-Shan Liu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jia-Ying Zhou
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Man Cao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Lei
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Si-Ying Ren
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Chang-Qiu Lin
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yi-Fan Yang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhang-Liang Hu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dian-Yong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xian-You Qu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| |
Collapse
|
3
|
Zhang H, Guo X, Zhou D, Wen J, Tang Y, Wang J, Liu Y, Chen G, Li N. Design, Synthesis of (±)-Millpuline A, and Biological Evaluation for the Lung Cell Protective Effects through SRC. ChemMedChem 2023; 18:e202300219. [PMID: 37704587 DOI: 10.1002/cmdc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
In this study, a visible-light-induced intermolecular [2+2] photocycloaddition reaction based on flavonoids was constructed to address the problems of low yield, poor physicochemical properties, and lack of target definition in total synthesis of (±)-millpuline A whose bioactivity remains unknown. As a result, 20 derivatives were synthesized for bioactivity evaluation. Consequently, lung cell protective effects of (±)-millpuline A and compound B13 a were revealed for the first time and the crucial role of stereoconfiguration of the cyclobutane moiety in their protective effects against NNK in normal lung cells was demonstrated. Moreover, through target prediction and experimental verification in MLE-12 cells, SRC was determined to be the target of (±)-millpuline A regarding its protective effect in NNK-induced lung cell injury. Results from RT-Q-PCR and HTRF experiments verified that (±)-millpuline A could repress SRC activity through a transcriptional mechanism but not acting as an inhibitor to directly bind to and thereby inhibit SRC protein. The results in this paper are informative for the further development of visible light-catalyzed cycloaddition of flavonoids and lay a scientific foundation for understanding the bioactivity and underlying mechanism of (±)-millpuline A and other structurally similar natural skeletons.
Collapse
Affiliation(s)
- Heng Zhang
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Xiao Guo
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jiatong Wen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yingzhan Tang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Gang Chen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| |
Collapse
|
4
|
Yuan S, Guerra Faura G, Areheart HE, Peulen NE, France S. Lewis Acid-Catalyzed 2,3-Dihydrofuran Acetal Ring-Opening Benzannulations toward Functionalized 1-Hydroxycarbazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238344. [PMID: 36500437 PMCID: PMC9737012 DOI: 10.3390/molecules27238344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
The development of a Lewis acid-catalyzed, intramolecular ring-opening benzannulation of 5-(indolyl)2,3-dihydrofuran acetals is described. The resulting 1-hydroxycarbazole-2-carboxylates are formed in up to 90% yield in 1 h. The dihydrofuran acetals are readily accessed from the reactions of enol ethers and α-diazo-β-indolyl-β-ketoesters. To highlight the method's synthetic utility, a formal total synthesis of murrayafoline A, a bioactive carbazole-containing natural product, was undertaken.
Collapse
Affiliation(s)
- Shaoren Yuan
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332, USA
| | - Gabriel Guerra Faura
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332, USA
| | - Hailey E. Areheart
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332, USA
| | - Natalie E. Peulen
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332, USA
| | - Stefan France
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332, USA
- Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332, USA
- Correspondence:
| |
Collapse
|
5
|
Fang F, Zheng H, Mao G, Chen S, Deng GJ. Metal- and Solvent-Free Synthesis of Tetrahydrobenzo[ c]carbazolones through NaI-Catalyzed Formal [4 + 2] Annulation. J Org Chem 2022; 87:6052-6063. [PMID: 35470673 DOI: 10.1021/acs.joc.2c00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel strategy for the preparation of functional carbazoles through NaI-catalyzed formal [4 + 2] annulation of 2-(indol-3-yl)cyclohexanones and alkynes/alkenes has been developed. The present approach started from easily available raw materials and provided a variety of tetrahydrobenzo[c]carbazolones in satisfactory yields under metal- and solvent-free conditions. Furthermore, the products could be further transformed into structurally valuable carbazole-based conjugated derivatives.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.,College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, P. R. China
| | - Haolin Zheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
6
|
Pramanik S, Chatterjee S, Banerjee R, Chowdhury C. Palladium-Catalyzed Benzannulations of 1-(Indol-2-yl)but-3-yn-1-ols: Easy Access to Functionalized Carbazoles. Org Lett 2022; 24:1895-1900. [DOI: 10.1021/acs.orglett.2c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Subhendu Pramanik
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India
| | - Sarat Chatterjee
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India
| | - Rumjhum Banerjee
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India
| | - Chinmay Chowdhury
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India
| |
Collapse
|
7
|
Yu H, Zhang Z, Zhang X, Xu Y, Huo D, Zhang L, Wang W. Green Tandem [5C + 1C] Cycloaromatization of α-Alkenoyl Ketene Dithioacetals and Nitroethane in Water: Eco-Friendly Synthesis of Ortho-Acylphenols. J Org Chem 2022; 87:2985-2996. [PMID: 35132856 DOI: 10.1021/acs.joc.1c02825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the first time, an eco-friendly and sustainable tandem [5C + 1C] cycloaromatization of α-alkenoyl ketene dithioacetals and nitroethane in water for the efficient synthesis of ortho-acylphenols was reported. In refluxing water, a range of α-alkenoyl ketene dithioacetals and nitroethane smoothly underwent tandem Michael addition/cyclization/aromatization reactions in the presence of 2.0 equivalents of DBU to provide various ortho-acylphenols in excellent yields. The green approach to ortho-acylphenols not only avoided the use of harmful organic solvents, which could result in serious environmental and safety issues, but also exhibited fascinating features such as good substrate scope, excellent yields, simple purification for desired products, ease of scale-up, and reusable aqueous medium.
Collapse
Affiliation(s)
- Haifeng Yu
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Zheyu Zhang
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Xue Zhang
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Yupeng Xu
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Dongyue Huo
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Lanyun Zhang
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Wenju Wang
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| |
Collapse
|
8
|
Fang RJ, Yan C, Sun J, Han Y, Yan CG. Efficient synthesis of polyfunctionalized carbazoles and pyrrolo[3,4 -c]carbazoles via domino Diels-Alder reaction. Beilstein J Org Chem 2021; 17:2425-2432. [PMID: 34621404 PMCID: PMC8450976 DOI: 10.3762/bjoc.17.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
The p-TsOH-catalyzed Diels–Alder reaction of 3-(indol-3-yl)maleimides with chalcone in toluene at 60 °C afforded two diastereoisomers of tetrahydropyrrolo[3,4-c]carbazoles, which can be dehydrogenated by DDQ oxidation in acetonitrile at room temperature to give the aromatized pyrrolo[3,4-c]carbazoles in high yields. On the other hand, the one-pot reaction of 3-(indol-3-yl)-1,3-diphenylpropan-1-ones with chalcones or benzylideneacetone in acetonitrile in the presence of p-TsOH and DDQ resulted in polyfunctionalized carbazoles in satisfactory yields. The reaction mechanism included the DDQ oxidative dehydrogenation of 3-(indol-3-yl)-1,3-diphenylpropan-1-ones to the corresponding 3-vinylindoles, their acid-catalyzed Diels–Alder reaction and sequential aromatization process.
Collapse
Affiliation(s)
- Ren-Jie Fang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chen Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
9
|
Yan C, Sun J, Han Y, Yan C. Domino Reaction for Synthesis of Spiro[pyrazole‐4,5′‐pyrrolo[3,4‐
c
]carbazoles] and Spiro[pyrrolo[3,4‐
c
]carbazole‐5,5′‐thiazoles]. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chen Yan
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Jing Sun
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Ying Han
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Chao‐Guo Yan
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| |
Collapse
|
10
|
Li C, Wang J, Yang SD. Visible-light-facilitated P-center radical addition to C[double bond, length as m-dash]X (X = C, N) bonds results in cyclizations. Chem Commun (Camb) 2021; 57:7997-8002. [PMID: 34319325 DOI: 10.1039/d1cc02604f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light-facilitated phosphorus radical reactions have been developed as a powerful and sustainable tool for the synthesis of various organophosphorus compounds. In general, these reactions require stoichiometric amounts of oxidants, and reductants, bases, and radical initiators, leading to uneconomical and complicated processes. Progress has been made over the past few years toward using reactions that proceed under eco-benign and mild reaction conditions. Furthermore, these reactions have broad functional group tolerance, with some facile and economical pathways. Herein, we summarize the discoveries and achievements pertaining to C-P bond formation through a visible light photocatalysis procedure with high atom economy, made by our group and other research groups. It was established that greener and more environmentally friendly approaches do not require an additional oxidant or base. Moreover, we have designed and synthesized a new type of P-radical precursor, which can take part in reactions without the requirement for any additional bases, oxidants, and additives. This breakthrough, pertaining to novel visible-light-induced transformations, will be discussed and a plausible mechanism is proposed, based on corresponding experiments and the literature.
Collapse
Affiliation(s)
- Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | |
Collapse
|