1
|
Zeng H, Le L, Zhou W, Chen Y, Xie W, Xiong B, Chen Y, Fu B, Qiu R. Ni/Pd Dual-Catalysis Strategy for C(sp 2)-Sb Cross-Coupling of Halostibines with Aryl Triflates and Applications of Products as Coupling Reagents, Ligands, and Anticancer Compounds. J Org Chem 2025. [PMID: 40388973 DOI: 10.1021/acs.joc.5c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
A novel and efficient dual-catalysis strategy using nickel and palladium has been developed for the cross-coupling of halostibines with aryl triflates to form C(sp2)-Sb bonds. This approach shows a wide substrate scope and high functional group tolerance and could be conducted on a gram scale. The synthesized arylstibines also could be arylation reagents reacting with alkyl and phenyl alkenes to form olefins and ligands to regulate the hydrogenation of diphenylacetylene. In addition, synthesized arylstibine 3q also shows satisfactory anticancer activity against cancerous MDA-MB-231 cells.
Collapse
Affiliation(s)
- Huifan Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Liyuan Le
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Wenjun Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Youwen Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wuxing Xie
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yi Chen
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Biao Fu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Renhua Qiu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
2
|
Liu YS, Wang ZQ, Zhang YP, Mu WY, Wang WM, Zhao JZ. A novel Mn@MOF-303 as a catalyst for the highly efficient S-formylation of benzyl thiols with CO 2. Chem Commun (Camb) 2025; 61:4678-4681. [PMID: 40026082 DOI: 10.1039/d5cc00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
A novel and efficient chemical approach for the S-formylation of benzylthiols with CO2 has been achieved in the presence of Mn@MOF-303 as the catalyst at room temperature. As a heterogeneous catalyst, Mn@MOF-303 exhibited efficient catalytic activity and excellent cycling performance. Furthermore, the reaction mechanism was further analyzed by DFT calculations.
Collapse
Affiliation(s)
- Ya-Shuai Liu
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| | - Zhi-Qiang Wang
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| | - Yong-Po Zhang
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| | - Wei-Yu Mu
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| | - Wen-Min Wang
- School of Science, Kaili University, Kaili, 556011, P. R. China.
| | - Jin-Zhong Zhao
- Basic Sciences Department, Shanxi Agricultural University, Jinzhong, 030801, P. R. China.
| |
Collapse
|
3
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Qin GQ, Wang J, Cao XR, Chu XQ, Zhou X, Rao W, Zhai LX, Miao C, Shen ZL. Nickel-Catalyzed Reductive Amidation of Aryl Fluorosulfates with Isocyanates: Synthesis of Amides via C-O Bond Cleavage. J Org Chem 2024; 89:13735-13743. [PMID: 39213645 DOI: 10.1021/acs.joc.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
With the assistance of nickel as catalyst, 2,2'-bipyridine (bpy) as ligand, and manganese as reducing metal, the reductive amidation of isocyanates with readily accessible aryl fluorosulfates could be successfully accomplished. The reactions proceeded effectively via C-O bond activation in DMF at room temperature, enabling the facile synthesis of a range of structurally diverse amides in moderate to high yields with broad functionality compatibility. In addition, the synthetic usefulness of the method was further demonstrated by applying the reaction in scale-up synthesis and the late-stage functionalization of complex molecules with biological activities.
Collapse
Affiliation(s)
- Gan-Qi Qin
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiao Wang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Rong Cao
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Xin Zhai
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
De Smet G, Bai X, Maes BUW. Selective C(aryl)-O bond cleavage in biorenewable phenolics. Chem Soc Rev 2024; 53:5489-5551. [PMID: 38634517 DOI: 10.1039/d3cs00570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Biorefining of lignocellulosic biomass via a lignin first approach delivers a range of products with high oxygen content. Besides pulp, a lignin oil rich in guaiacols and syringols is obtained bearing multiple C(aryl)-OH and C(aryl)-OMe groups, typically named phenolics. Similarly, technical lignin can be used but is generally more difficult to process providing lower yields of monomers. Removal of the hydroxy and methoxy groups in these oxygenated arenes is challenging due to the inherently strong C-O bonds, in addition to the steric and electronic deactivation by adjacent -OH or -OMe groups. Moreover, chemoselective removal of a specific group in the presence of other similar functionalities is non-trivial. Other side-reactions such as ring saturation and transalkylation further complicate the desired reduction process. In this overview, three different selective reduction reactions are considered. Complete hydrodeoxygenation removes both hydroxy and methoxy groups resulting in benzene and alkylated derivatives (BTX type products) which is often complicated by overreduction of the arene ring. Hydrodemethoxylation selectively removes methoxy groups in the presence of hydroxy groups leading to phenol products, while hydrodehydroxylation only removes hydroxy groups without cleavage of methoxy groups giving anisole products. Instead of defunctionalization via reduction transformation of C(aryl)-OH, albeit via an initial derivatization into C(aryl)-OX, into other functionalities is possible and also discussed. In addition to methods applying guaiacols and syringols present in lignin oil as model substrates, special attention is given to methods using mixtures of these compounds obtained from wood/technical lignin. Finally, other important aspects of C-O bond activation with respect to green chemistry are discussed.
Collapse
Affiliation(s)
- Gilles De Smet
- Organic Synthesis Division (ORSY), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Xingfeng Bai
- Organic Synthesis Division (ORSY), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division (ORSY), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
6
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
7
|
Gong Y, Hu J, Qiu C, Gong H. Insights into Recent Nickel-Catalyzed Reductive and Redox C-C Coupling of Electrophiles, C(sp 3)-H Bonds and Alkenes. Acc Chem Res 2024; 57:1149-1162. [PMID: 38547518 DOI: 10.1021/acs.accounts.3c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
ConspectusTransition metal-catalyzed reductive cross-coupling of two carbon electrophiles, also known as cross-electrophile coupling (XEC), has transformed the landscape of C-C coupling chemistry. Nickel catalysts, in particular, have demonstrated exceptional performance in facilitating XEC reactions, allowing for diverse elegant transformations by employing various electrophiles to forge C-C bonds. Nevertheless, several crucial challenges remain to be addressed. First, the intrinsic chemoselectivity between two structurally similar electrophiles in Ni-catalyzed C(sp3)-C(sp3) and C(sp2)-C(sp2) cross-coupling has not been well understood; this necessitates an excess of one of the coupling partners to achieve synthetically useful outcomes. Second, the substitution of economically and environmentally benign nonmetal reductants for Zn/Mn can help scale up XEC reactions and avoid trace metals in pharmaceutical products, but research in this direction has progressed slowly. Finally, it is highly warranted to leverage mechanistic insights from Ni-catalyzed XEC to develop innovative thermoredox coupling protocols, specifically designed to tackle challenges associated with difficult substrates such as C(sp3)-H bonds and unactivated alkenes.In this Account, we address the aforementioned issues by reviewing our recent work on the reductive coupling of C-X and C-O electrophiles, the thermoredox strategy for coupling associated with C(sp3)-H bonds and unactivated alkenes, and the use of diboron esters as nonmetal reductants to achieve reductive coupling. We focus on the mechanistic perspectives of the transformations, particularly how the key C-NiIII-C intermediates are generated, in order to explain the chemoselective and regioselective coupling results. The Account consists of four sections. First, we discuss the Zn/Mn-mediated chemoselective C(sp2)-C(sp2) and C(sp3)-C(sp3) bond formations based on the coupling of selected alkyl/aryl, allyl/benzyl, and other electrophiles. Second, we describe the use of diboron esters as versatile reductants to achieve C(sp3)-C(sp3) and C(sp3)-C(sp2) couplings, with an emphasis on the mechanistic consideration for the construction of C(sp3)-C(sp2) bonds. Third, we discuss leveraging C(sp3)-O bonds for effective C(sp3)-C bond formation via in situ halogenation of alcohols as well as the reductive preparation of α-vinylated and -arylated unusual amino esters. In the final section, we illustrate the thermoredox functionalization of challenging C(sp3)-H bonds with aryl and alkyl halides to afford C(sp3)-C bonds by taking advantage of the compatibility of Zn with the oxidant di-tert-butylperoxide (DTBP). Furthermore, we discuss a Ni-catalyzed and SiH/DTBP-mediated hydrodimerization of terminal alkenes to selectively forge head-to-head and methyl branched C(sp3)-C(sp3) bonds. This process, conducted in the presence or absence of catalytic CuBr2, provides a solution to a long-standing challenge: site-selective hydrocoupling of unactivated alkenes to produce challenging C(sp3)-C(sp3) bonds.
Collapse
Affiliation(s)
- Yuxin Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Jie Hu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Canbin Qiu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Li X, Li Y, Wang Z, Shan W, Liu R, Shi C, Qin H, Yuan L, Li X, Shi D. Nickel-Catalyzed Stereoselective Cascade C–F Functionalizations of gem-Difluoroalkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Yuxiu Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, Guangdong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Leifeng Yuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, 168 Weihai Road, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
9
|
Yang R, Xie Q, Yan Q, Zhang X, Gao B. Palladium-Catalyzed Thiocarbonylation of Aryl Iodides with S-Aryl Thioformates via Thioester Transfer. Org Lett 2022; 24:7555-7559. [PMID: 36214733 DOI: 10.1021/acs.orglett.2c02953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we reported a novel approach to synthesize thioesters with S-aryl thioformates as thioester sources. The reaction proceeded at ambient temperature using widely available starting ingredients, wherein the thioester moiety was smoothly transferred to aryl iodides from S-aryl thioformates. A variety of substrates with various electronic natures were all tolerated under the reaction conditions to furnish desirable thioesters in ranges from moderate to excellent yields. The gram-scale reaction was also conducted, and there was virtually little change in chemical yield, indicating that large-scale synthesis of thioesters may be viable using this method.
Collapse
Affiliation(s)
- Ruiting Yang
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Qiumin Xie
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Qian Yan
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Xiuli Zhang
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Bao Gao
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| |
Collapse
|
10
|
Wu X, Li J, Xia S, Zhu C, Xie J. Nickel-catalyzed Thioester Transfer Reaction with sp 2-Hybridized Electrophiles. J Org Chem 2022; 87:10003-10017. [PMID: 35815594 DOI: 10.1021/acs.joc.2c00979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a thioacylation transfer reaction based on nickel-catalyzed C-C bond cleavage of thioesters with sp2-hybridized electrophiles. Aryl bromides, iodides, and alkenyl triflates can participate in thioester transfer reaction of aryl thioesters, affording a wide range of structurally diverse new thioesters in yields of up to 98% under mild reaction conditions. With this protocol, it is possible to construct alkenyl thioesters from the corresponding ketones through the generation of alkenyl triflates.
Collapse
Affiliation(s)
- Xiaopeng Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jinhang Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Siyu Xia
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
11
|
Ye Y, Qi X, Xu B, Lin Y, Xiang H, Zou L, Ye XY, Xie T. Nickel-catalyzed cross-electrophile allylation of vinyl bromides and the modification of anti-tumour natural medicine β-elemene. Chem Sci 2022; 13:6959-6966. [PMID: 35774167 PMCID: PMC9200125 DOI: 10.1039/d2sc02054h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant. This Ni-catalyzed modular approach displays excellent functional group tolerance and a broad substrate scope, which the creation of a series of 1,4-dienes including several structurally complex natural products and pharmaceutical motifs. Moreover, the coupling strategy has the potential to realize enantiomeric control. The practicality of this transformation is demonstrated through the potent modification of the naturally antitumor active molecule β-elemene. Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant.![]()
Collapse
Affiliation(s)
- Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang Qi
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Bing Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Ying Lin
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Liang Zou
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| |
Collapse
|
12
|
Sun C, Yin G. Integrating aryl chlorides into nickel-catalyzed 1,1-difunctionalization of alkenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Shekhar S, Ahmed TS, Ickes AR, Haibach MC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
14
|
Gong B, Zhu H, Liu Y, Li Q, Yang L, Wu G, Fan Q, Xie Z, Le Z. Palladium-catalyzed sulfonylative coupling of benzyl(allyl) carbonates with arylsulfonyl hydrazides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
15
|
Chen J, Zhu S. Nickel-Catalyzed Multicomponent Coupling: Synthesis of α-Chiral Ketones by Reductive Hydrocarbonylation of Alkenes. J Am Chem Soc 2021; 143:14089-14096. [PMID: 34436887 DOI: 10.1021/jacs.1c07851] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A nickel-catalyzed, multicomponent regio- and enantioselective coupling via sequential hydroformylation and carbonylation from readily available starting materials has been developed. This modular multicomponent hydrofunctionalization strategy enables the straightforward reductive hydrocarbonylation of a broad range of unactivated alkenes to produce a wide variety of unsymmetrical dialkyl ketones bearing a functionalized α-stereocenter, including enantioenriched chiral α-aryl ketones and α-amino ketones. It uses chiral bisoxazoline as a ligand, silane as a reductant, chloroformate as a safe CO source, and a racemic secondary benzyl chloride or an N-hydroxyphthalimide (NHP) ester of a protected α-amino acid as the alkylation reagent. The benign nature of this process renders this method suitable for late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|