1
|
Bai G, Li D, Wang Y, Yi J, Xu K, Wang W, Li J, Tan G, Yu X. Challenging Aromaticity: Revealing a Thioesterase Domain in a Fungal Nonreducing Polyketide Synthase Governing the Production of 3-Methylene Isochromanone. Org Lett 2024; 26:6303-6308. [PMID: 38815056 DOI: 10.1021/acs.orglett.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Thioesterase (TE) domain exerts a great influence over the structure of the final product and TE-released nonreduced polyketides (nrPKs) retain aromaticity. 3-Methylene isochromanones are lactones with a unique olefin at C3 that disrupts the aromaticity, whose biosynthetic details are speculative. Our study unveils the complete biosynthesis of ascochin, in which the construction of the 3-methylene isochromanone backbone is achieved by a nonreducing polyketide synthase (nrPKS) alone and two subsequent oxidations are involved. Intriguingly, the TEAscD serves as a gatekeeper to direct the product release toward formation of nonaromatic 3-methylene isochromanone, rather than the typical aromatic product.
Collapse
Affiliation(s)
- Guitao Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Dan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yi Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jiale Yi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wenxuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jing Li
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Guishan Tan
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xia Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
2
|
Wang M, Luo M, Ding X, Chang S, He N, Hong B, Xie Y. (±) Pestalactone D and pestapyrone F, two new isocoumarins from an endolichenic Pestalotiopsis rhododendri. J Antibiot (Tokyo) 2023; 76:678-681. [PMID: 37612463 DOI: 10.1038/s41429-023-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Three isocoumarins, including two new compounds, (±) pestalactone D (1) and pestapyrone F (2), as well as one known compound, pestapyrone D (3), were isolated from the culture of the endolichenic Pestalotiopsis rhododendri LF-19-12. The planar structures of all compounds were elucidated by NMR and MS spectra. And the absolute configurations of 1 were confirmed by single crystal X-ray diffraction analysis, indicative of it as a racemate of 4S/12S and 4R/12R enantiomers. Compound 1 exhibited weak anti-coronaviral activity against human coronavirus HCoV-229E with an EC50 of 77.61 μM. Based on the bioinformatics analysis, the biosynthetic pathway of 1 has been proposed.
Collapse
Affiliation(s)
- Mengyuan Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Mengna Luo
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Xiaotian Ding
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Shanshan Chang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Ning He
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China.
| |
Collapse
|
3
|
Yu J, Liu X, Ma C, Li C, Zhang Y, Che Q, Zhang G, Zhu T, Li D. Activation of a Silent Polyketide Synthase SlPKS4 Encoding the C 7-Methylated Isocoumarin in a Marine-Derived Fungus Simplicillium lamellicola HDN13-430. Mar Drugs 2023; 21:490. [PMID: 37755103 PMCID: PMC10532586 DOI: 10.3390/md21090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Coumarins, isocoumarins and their derivatives are polyketides abundant in fungal metabolites. Although they were first discovered over 50 years ago, the biosynthetic process is still not entirely understood. Herein, we report the activation of a silent nonreducing polyketide synthase that encodes a C7-methylated isocoumarin, similanpyrone B (1), in a marine-derived fungus Simplicillium lamellicola HDN13-430 by heterologous expression. Feeding studies revealed the host enzymes can change 1 into its hydroxylated derivatives pestapyrone A (2). Compounds 1 and 2 showed moderate radical scavenging activities with ED50 values of 67.4 µM and 104.2 µM. Our discovery fills the gap in the enzymatic elucidation of naturally occurring C7-methylated isocoumarin derivatives.
Collapse
Affiliation(s)
- Jing Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Xiaolin Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Chen Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Yuhan Zhang
- School of Pharmaceutical Science, Shandong University, Jinan 250100, China;
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
4
|
Atanasoff‐Kardjalieff AK, Seidl B, Steinert K, Daniliuc CG, Schuhmacher R, Humpf H, Kalinina S, Studt‐Reinhold L. Biosynthesis of the Isocoumarin Derivatives Fusamarins is Mediated by the PKS8 Gene Cluster in Fusarium. Chembiochem 2023; 24:e202200342. [PMID: 36137261 PMCID: PMC10947347 DOI: 10.1002/cbic.202200342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Fusarium mangiferae causes the mango malformation disease (MMD) on young mango trees and seedlings resulting in economically significant crop losses. In addition, F. mangiferae produces a vast array of secondary metabolites (SMs), including mycotoxins that may contaminate the harvest. Their production is tightly regulated at the transcriptional level. Here, we show that lack of the H3 K9-specific histone methyltransferase, FmKmt1, influences the expression of the F. mangiferae polyketide synthase (PKS) 8 (FmPKS8), a so far cryptic PKS. By a combination of reverse genetics, untargeted metabolomics, bioinformatics and chemical analyses including structural elucidation, we determined the FmPKS8 biosynthetic gene cluster (BGC) and linked its activity to the production of fusamarins (FMN), which can be structurally classified as dihydroisocoumarins. Functional characterization of the four FMN cluster genes shed light on the biosynthetic pathway. Cytotoxicity assays revealed moderate toxicities with IC50 values between 1 and 50 μM depending on the compound.
Collapse
Affiliation(s)
- Anna K. Atanasoff‐Kardjalieff
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| | - Bernhard Seidl
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Katharina Steinert
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Hans‐Ulrich Humpf
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Svetlana Kalinina
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Lena Studt‐Reinhold
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| |
Collapse
|
5
|
Skellam E. Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes. Nat Prod Rep 2022; 39:754-783. [PMID: 34842268 DOI: 10.1039/d1np00056j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 1999 up to 2021Fungal polyketides encompass a range of structurally diverse molecules with a wide variety of biological activities. The giant multifunctional enzymes that synthesize polyketide backbones remain enigmatic, as do many of the tailoring enzymes involved in functional modifications. Recent advances in elucidating biosynthetic gene clusters (BGCs) have revealed numerous examples of fungal polyketide synthases that require the action of collaborating enzymes to synthesize the carbon backbone. This review will discuss collaborating and trans-acting enzymes involved in loading, extending, and releasing polyketide intermediates from fungal polyketide synthases, and additional modifications introduced by trans-acting enzymes demonstrating the complexity encountered when investigating natural product biosynthesis in fungi.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|