1
|
Li H, Liu Y, Zhang S, Ma L, Zeng Z, Zhou Z, Gandon V, Xu H, Yi W, Wang S. Access to N-α-deuterated amino acids and DNA conjugates via Ca(II)-HFIP-mediated reductive deutero-amination of α-oxo-carbonyl compounds. Nat Commun 2025; 16:1816. [PMID: 39979333 PMCID: PMC11842556 DOI: 10.1038/s41467-025-57098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
The development of practical and selective strategies for deuterium incorporation to construct deuterated molecules, particularly deuterium-labeled amino acids, has become as a growing focus of basic research, yet it remains a formidable challenge. Herein, we present a bioinspired calcium-HFIP-mediated site-selective reductive deutero-amination of α-oxo-carbonyl compounds with amines. Utilizing d2-Hantzsch ester as the deuterium source, this reaction attains remarkable deuteration efficiency (> 99% deuteration). It enables the synthesis of N-α-deuterated amino acid motifs with a wide range of functionality, as evidenced by over 130 examples. The method exhibits compatibility with diverse substrates, such as amino acids, peptides, drug molecules, and natural products bearing different substituents. Moreover, the application of this strategy in the synthesis of DNA-tagged N-α-deuterated amino acids/peptides has been demonstrated. This work offers an efficient and innovative solution for deuterated amino acid chemistry and holds substantial application potential in organic synthesis, medicinal chemistry, and chemical biology.
Collapse
Affiliation(s)
- Haoran Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuwei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Silin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Ma
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongyi Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment Henri Moissan, Orsay, France
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Piejko M, Moran J, Lebœuf D. Difunctionalization Processes Enabled by Hexafluoroisopropanol. ACS ORGANIC & INORGANIC AU 2024; 4:287-300. [PMID: 38855339 PMCID: PMC11157514 DOI: 10.1021/acsorginorgau.3c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024]
Abstract
In the past 5 years, hexafluoroisopropanol (HFIP) has been used as a unique solvent or additive to enable challenging transformations through substrate activation and stabilization of reactive intermediates. In this Review, we aim at describing difunctionalization processes which were unlocked when HFIP was involved. Specifically, we focus on cyclizations and additions to alkenes, alkynes, epoxides, and carbonyls that introduce a wide range of functional groups of interest.
Collapse
Affiliation(s)
- Maciej Piejko
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Joseph Moran
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Institut
Universitaire de France (IUF), 75005 Paris, France
| | - David Lebœuf
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
3
|
Ni F, Huang Y, Qiu L, Yang C. Synthetic progress of organic thermally activated delayed fluorescence emitters via C-H activation and functionalization. Chem Soc Rev 2024; 53:5904-5955. [PMID: 38717257 DOI: 10.1039/d3cs00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.
Collapse
Affiliation(s)
- Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yipan Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
4
|
Pradhan TR, Farah AO, Sagar K, Wise HR, Srimannarayana M, Cheong PHY, Park JK. Acetate Assistance in Regioselective Hydroamination of Allenamides: A Combined Experimental and Density Functional Theory Study. J Org Chem 2024; 89:5927-5940. [PMID: 38651750 DOI: 10.1021/acs.joc.3c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A key factor in the development of selective nucleophilic addition to allenamides is controlling the reactivity of electrophilic intermediates, which is generally achieved using an electrophilic activator via conjugated iminium intermediates. In this combined experimental and computational study, we show that a general and highly chemoselective hydroamination of allenamides can be accomplished using a combination of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and NaOAc. Experimental mechanistic studies revealed that HFIP mediates proton transfer to activate the allenamide, while the acetate additive significantly contributes to N-selective interception. This strategy enables a general hydroamination of allenamides without the use of metals. We demonstrated that various functionalized 1,3-diamines could be readily synthesized and diversified into value-added structural motifs. Detailed mechanistic investigations using the density functional theory revealed the role of NaOAc in the formation of reactive electrophilic intermediates, which ultimately governed the selective formation of 1,3-diamine products. Critically, calculations of the potential energy surface around the proton-transfer transition state revealed that two different reactive electrophilic intermediates were formed when NaOAc was added.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kadiyala Sagar
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Telangana 502329, India
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Henry R Wise
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Malempati Srimannarayana
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Telangana 502329, India
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Bortolato T, Simionato G, Vayer M, Rosso C, Paoloni L, Benetti EM, Sartorel A, Lebœuf D, Dell’Amico L. The Rational Design of Reducing Organophotoredox Catalysts Unlocks Proton-Coupled Electron-Transfer and Atom Transfer Radical Polymerization Mechanisms. J Am Chem Soc 2023; 145:1835-1846. [PMID: 36608266 PMCID: PMC9881005 DOI: 10.1021/jacs.2c11364] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photocatalysis has become a prominent tool in the arsenal of organic chemists to develop and (re)imagine transformations. However, only a handful of versatile organic photocatalysts (PCs) are available, hampering the discovery of new reactivities. Here, we report the design and complete physicochemical characterization of 9-aryl dihydroacridines (9ADA) and 12-aryl dihydrobenzoacridines (12ADBA) as strong reducing organic PCs. Punctual structural variations modulate their molecular orbital distributions and unlock locally or charge-transfer (CT) excited states. The PCs presenting a locally excited state showed better performances in photoredox defunctionalization processes (yields up to 92%), whereas the PCs featuring a CT excited state produced promising results in atom transfer radical polymerization under visible light (up to 1.21 Đ, and 98% I*). Unlike all the PC classes reported so far, 9ADA and 12ADBA feature a free NH group that enables a catalytic multisite proton-coupled electron transfer (MS-PCET) mechanism. This manifold allows the reduction of redox-inert substrates including aryl, alkyl halides, azides, phosphate and ammonium salts (Ered up to -2.83 vs SCE) under single-photon excitation. We anticipate that these new PCs will open new mechanistic manifolds in the field of photocatalysis by allowing access to previously inaccessible radical intermediates under one-photon excitation.
Collapse
Affiliation(s)
- Tommaso Bortolato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Gianluca Simionato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marie Vayer
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 allée Gaspard Monge, 67000Strasbourg, France
| | - Cristian Rosso
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Paoloni
- Dipartimento
di Fisica e Astronomia G. Galilei, University
of Padova, Via Marzolo
8, 35131, Padova, Italy
| | - Edmondo M. Benetti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Andrea Sartorel
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - David Lebœuf
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 allée Gaspard Monge, 67000Strasbourg, France,E-mail:
| | - Luca Dell’Amico
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy,E-mail:
| |
Collapse
|
6
|
Zhang D, Shao YB, Xie W, Chen Y, Liu W, Bao H, He F, Xue XS, Yang X. Remote Enantioselective Desymmetrization of 9,9-Disubstituted 9,10-Dihydroacridines through Asymmetric Aromatic Aminations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying-Bo Shao
- College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wansen Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanyang Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Faqian He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Wu M, Duan Z, Liu Q, Gao H, Zhou Z, Yi W, Wang S. Ca(NTf2)2/HFIP‐Mediated Direct and Mild Rearrangement of Cyclopropyl Carbinols to E‐Homoallylic Triflimides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Wu
- Guangzhou Medical University School of Pharmaceutical Sciences CHINA
| | - Zhiqiang Duan
- Guangzhou Medical University School of Pharmaceutical Sciences CHINA
| | - Qingmei Liu
- Guangzhou Medical University School of Pharmaceutical Sciences CHINA
| | - Hui Gao
- Guangzhou Medical University School of Pharmaceutical Sciences CHINA
| | - Zhi Zhou
- Guangzhou Medical University School of Pharmaceutical Sciences CHINA
| | - Wei Yi
- Guangzhou Medical University School of Pharmaceutical Sciences CHINA
| | - Shengdong Wang
- Guangzhou Medical University school of pharmaceutical science Xinzao, Panyu District 511436 guangzhou CHINA
| |
Collapse
|
8
|
Moskalik MY, Astakhova VV. Triflamides and Triflimides: Synthesis and Applications. Molecules 2022; 27:5201. [PMID: 36014447 PMCID: PMC9414225 DOI: 10.3390/molecules27165201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Among the variety of sulfonamides, triflamides (CF3SO2NHR, TfNHR) occupy a special position in organic chemistry. Triflamides are widely used as reagents, efficient catalysts or additives in numerous reactions. The reasons for the widespread use of these compounds are their high NH-acidity, lipophilicity, catalytic activity and specific chemical properties. Their strong electron-withdrawing properties and low nucleophilicity, combined with their high NH-acidity, makes it possible to use triflamides in a vast variety of organic reactions. This review is devoted to the synthesis and use of N-trifluoromethanesulfonyl derivatives in organic chemistry, medicine, biochemistry, catalysis and agriculture. Part of the work is a review of areas and examples of the use of bis(trifluoromethanesulfonyl)imide (triflimide, (CF3SO2)2NH, Tf2NH). Being one of the strongest NH-acids, triflimide, and especially its salts, are widely used as catalysts in cycloaddition reactions, Friedel-Crafts reactions, condensation reactions, heterocyclization and many others. Triflamides act as a source of nitrogen in C-amination (sulfonamidation) reactions, the products of which are useful building blocks in organic synthesis, catalysts and ligands in metal complex catalysis, and have found applications in medicine. The addition reactions of triflamide in the presence of oxidizing agents to alkenes and dienes are considered separately.
Collapse
Affiliation(s)
- Mikhail Y. Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | | |
Collapse
|
9
|
Gryaznova TV, Nikanshina EO, Fayzullin RR, Islamov DR, Tarasov MV, Kholin KV, Budnikova YH. EPR-electrochemical monitoring of P–C coupling: Towards one-step electrochemical phosphorylation of acridine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Abe T, Yamashiro T, Shimizu K, Sawada D. Indole Editing Enabled by HFIP-Mediated Ring-Switch Reactions of 3-Amino-2-Hydroxyindolines. Chemistry 2022; 28:e202201113. [PMID: 35438809 DOI: 10.1002/chem.202201113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/26/2022]
Abstract
This work reports the novel reactivity of hemiaminal as a precursor for indole editing at the multi-site. The HFIP-promoted indole editing of indoline hemiaminals affords 2-arylindoles through a ring-switch sequence. The key to success of this transformation is to use a cyclic hemiaminal as an α-amino aldehyde surrogate under transient tautomeric control. This transformation features mild reaction conditions and good yields with broad functional group tolerance. The utility of this transformation is presented through the one-pot protocol and the synthesis of isocryptolepine.
Collapse
Affiliation(s)
- Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Kaho Shimizu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| |
Collapse
|
11
|
Vayer M, Zhang S, Moran J, Lebœuf D. Rapid and Mild Metal-Free Reduction of Epoxides to Primary Alcohols Mediated by HFIP. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marie Vayer
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Shaofei Zhang
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Joseph Moran
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - David Lebœuf
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| |
Collapse
|
12
|
Liu Q, Zhou Z, Kuang M, Gao H, Yi W, Wang S. Direct Assembly of Phthalides via Calcium(II)-Catalyzed Cascade ortho-C-Alkenylation/Hydroacyloxylation of 3-Aminobenzoic Acids with Alkynes in Hexafluoroisopropanol. Org Lett 2022; 24:1575-1580. [PMID: 35195430 DOI: 10.1021/acs.orglett.1c04274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By virtue of a calcium(II)/hexafluoroisopropanol cocatalytic system, the efficient and practical coupling of 3-aminobenzoic acids with alkynes has been realized, giving direct and regioselective access to the phthalide framework with good substrate/functional group compatibility. Mechanistic studies identified 3-amino-2-vinylbenzoic acid species as the active intermediate, thereby revealing an ortho-C-alkenylation/hydroacyloxylation cascade for this transformation.
Collapse
Affiliation(s)
- Qingmei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Minyao Kuang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
13
|
Nie XD, Mao ZY, Guo JM, Si CM, Wei BG, Lin GQ. AgNTf 2-Catalyzed Regioselective C-H Alkenylation of N,N-Dialkylanilines with Ynamides. J Org Chem 2022; 87:2380-2392. [PMID: 35041783 DOI: 10.1021/acs.joc.1c02263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regioselective C-H alkenylation of N,N-dialkylanilines with ynamides was developed using AgNTf2 as a catalyst. This approach represents a facile hydroarylation of ynamides, allowing for the introduction of an alkenyl group exclusively at the para position of aniline derivatives. As a result, a series of 4-alkenyl N,N-dialkylanilines were synthesized with excellent regioselectivities.
Collapse
Affiliation(s)
- Xiao-Di Nie
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuo-Ya Mao
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jia-Ming Guo
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Mei Si
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Song H, Zhou H, Shen Y, Wang H, Song H, Cai X, Xu C. HFIP as Protonation Reagent and Solvent for Regioselective Alkylation of Indoles with All-Carbon Centers. J Org Chem 2022; 87:1086-1097. [PMID: 35015536 DOI: 10.1021/acs.joc.1c02412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The regio- and chemoselective construction of indole bearing an all-carbon center at the C3-position, a versatile bioactive building block, by C(sp2)-C(sp3) formation with olefins has been achieved through utilization of hexafluoroisopropanol (HFIP) as the protonation reagent and solvent. The catalytic reactions are operationally simple and green compared with previous reports utilizing elaborated olefins and catalysts. This protocol allows for alkylation of a variety of substituted indoles with diverse of styrene type alkenes in excellent yields and with high selectivity. Application of this protocol to the synthesis of drug was pursued and with an improved yield in contrast to previous art. Catalytic kinetics and deuterium-labeling experiments suggest that the rate-determining step involves the protonation of olefin by HFIP to generate carbocation, followed by electrophilic addition to indole derivative.
Collapse
Affiliation(s)
- Heng Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Hu Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Yang Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Hao Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Hua Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P.R. China
| |
Collapse
|
15
|
Yıldız T, Baştaş İ, Başpınar Küçük H. Transition-metal-free intramolecular Friedel-Crafts reaction by alkene activation: A method for the synthesis of some novel xanthene derivatives. Beilstein J Org Chem 2021; 17:2203-2208. [PMID: 34621387 PMCID: PMC8450977 DOI: 10.3762/bjoc.17.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this work, new derivatives (substituted 9-methyl-9-arylxanthenes) of xanthene compounds (5a-l) of possible biological significance were synthesized by developing a new synthesis method. In order to obtain xanthene derivatives, the original alkene compounds to be used as the starting materials were synthesized in four steps using appropriate reactions. A cyclization reaction by intramolecular Friedel-Crafts alkylation was carried out in order to synthesize the desired xanthene derivatives using the alkenes as starting compounds. The intramolecular Friedel-Crafts reaction was catalyzed by trifluoroacetic acid (TFA) and provided some novel substituted 9-methyl-9-arylxanthenes with good yields at room temperature within 6-24 hours. As a result, an alkene compound was used for activation with TFA in the synthesis of xanthene through intramolecular Friedel-Crafts alkylation for the first time.
Collapse
Affiliation(s)
- Tülay Yıldız
- Istanbul University-Cerrahpaşa, Department of Chemistry, Istanbul, Avcilar, 34320, Turkey
| | - İrem Baştaş
- Istanbul University-Cerrahpaşa, Department of Chemistry, Istanbul, Avcilar, 34320, Turkey
| | - Hatice Başpınar Küçük
- Istanbul University-Cerrahpaşa, Department of Chemistry, Istanbul, Avcilar, 34320, Turkey
| |
Collapse
|