1
|
Devaraj T, Srinivasan K. Ytterbium Triflate-Catalyzed Intramolecular Arylative Ring Opening of Arylaminomethyl-Substituted Donor-Acceptor Cyclopropanes: Access to Tetrahydroquinolines. J Org Chem 2024; 89:13886-13893. [PMID: 39303150 DOI: 10.1021/acs.joc.4c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The treatment of arylaminomethyl-substituted donor-acceptor cyclopropanes with a catalytic amount of Yb(OTf)3 provides expedient access to tetrahydroquinoline derivatives. The transformation proceeds through an intramolecular SN2-type attack of the aminomethyl-containing aryl ring on the cyclopropane ring, leading to the formation of the products as single diastereomers.
Collapse
Affiliation(s)
- Thangaraj Devaraj
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
2
|
Chen Z, Li YF, Tan SZ, Ouyang Q, Chen ZC, Du W, Chen YC. Formal nucleophilic pyrrolylmethylation via palladium-based auto-tandem catalysis: switchable regiodivergent synthesis and remote chirality transfer. Chem Sci 2022; 13:12433-12439. [PMID: 36349271 PMCID: PMC9628985 DOI: 10.1039/d2sc05210e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 09/10/2023] Open
Abstract
Although nucleophilic benzylation-type reaction to introduce various aromatic systems into molecules has been widely explored, the related pyrrolylmethylation version remains to be disclosed. Reported herein is a palladium-catalysed multiple auto-tandem reaction between N-Ts propargylamines, allyl carbonates and aldimines in the presence of an acid, proceeding through sequential allylic amination, cycloisomerisation, vinylogous addition and aromatisation steps. A diversity of formal pyrrolylmethylated amine products were finally furnished efficiently. In addition, switchable regiodivergent 3-pyrrolylmethylation and 4-pyrrolylmethylation were realised by tuning catalytic conditions. Moreover, remote chirality transfer with readily available enantioenriched starting materials was well achieved with an achiral ligand, relying on diastereoselective generation of η2-Pd(0) complexes between Pd(0) and chiral 1,3-diene intermediates in the key vinylogous addition step. A few control experiments were conducted to elucidate the palladium-involved tandem reaction and regiodivergent synthesis.
Collapse
Affiliation(s)
- Zhi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Yu-Fan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Shun-Zhong Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|
3
|
Huang J, Zhu X, Wang Y, Min Y, Li X, Zhang R, Qi D, Hua Z, Chen T. Compartmentalization of incompatible catalysts by micelles from bottlebrush copolymers for one-pot cascade catalysis. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Zhang JL, Ma R, Zhao HH, Xu PF. Enantioselective construction of spiro-tetrahydroquinoline scaffolds through asymmetric catalytic cascade reactions. Chem Commun (Camb) 2022; 58:3493-3496. [PMID: 35191451 DOI: 10.1039/d2cc00502f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient and concise strategy has been successfully developed for merging spiro-tetrahydroquinoline with spiro-benzofuranone into a single new skeleton through asymmetric catalytic cascade reactions catalyzed by quinine-derived chiral bifunctional squaramide organocatalysts. In this approach, differently substituted spiro-tetrahydroquinoline derivatives were smoothly obtained with high yields, and excellent diastereoselectivities and enantioselectivities (up to 99% yield, up to >20 : 1 dr, up to >99% ee, 40 examples) under mild reaction conditions.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Rui Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Huan-Huan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
5
|
Zhou N, Xu Q, Xia Z, Kuang K, Wu S, Li W, Zhang M. Palladium-catalyzed radical cascade cyanoalkylsulfonylation/cyclization of 3-arylethynyl-[1,1'-biphenyl]-2-carbonitriles with cyclobutanone oxime esters and DABSO. Chem Commun (Camb) 2022; 58:2335-2338. [PMID: 35079757 DOI: 10.1039/d1cc06825c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A palladium-catalyzed radical cascade cyanoalkylsulfonylation/cyclization of 3-arylethynyl-[1,1'-biphenyl]-2-carbonitriles with DABCO·(SO2)2 and cyclobutanone oxime esters via cleavage of a C-C single bond and insertion of SO2 was described. A series of cyanoalkylsulfone-containing cyclopenta[gh]phenanthridines were obtained in moderate-to-good yields, thus featuring mild reaction conditions, a broad substrate scope, and a high functional group tolerance.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Wenping Li
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
6
|
Liang H, Ji DS, Xu GQ, Luo YC, Zheng H, Xu PF. Metal-free, visible-light induced enantioselective three-component dicarbofunctionalization and oxytrifluoromethylation of enamines via chiral phosphoric acid catalysis. Chem Sci 2022; 13:1088-1094. [PMID: 35211274 PMCID: PMC8790774 DOI: 10.1039/d1sc06613g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Using diverse carbon-centered radical precursors and electron-rich (hetero)aromatics and alcohols as nucleophiles, a visible-light driven chiral phosphoric acid (CPA) catalyzed asymmetric intermolecular, three-component radical-initiated dicarbofunctionalization and oxytrifluoromethylation of enamines was developed, which provides a straightforward access to chiral arylmethylamines, aza-hemiacetals and γ-amino acid derivatives with excellent enantioselectivity. As far as we know, this is the first example of constructing a chiral C–O bond using simple alcohols via visible-light photocatalysis. Chiral phosphoric acid played multiple roles in the reaction, including controlling the reaction stereoselectivity and promoting the generation of radical intermediates by activating Togni's reagent. Mechanistic studies also suggested the importance of the N–H bond of the enamine and indole for the reactions. We have developed a metal-free, visible-light driven chiral phosphoric acid catalyzed asymmetric intermolecular, three-component radical-initiated dicarbofunctionalization and oxytrifluoromethylation of enamines.![]()
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Dong-Sheng Ji
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University Lanzhou 730000 P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
7
|
Zhang JL, Ye WL, Zhang J, Hu XQ, Xu PF. Enantioselective Construction of Polycyclic Indazole Skeletons Bearing Five Consecutive Chiral Centers through an Asymmetric Triple-Reaction Sequence. Org Lett 2021; 23:5033-5038. [PMID: 34138570 DOI: 10.1021/acs.orglett.1c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach for the asymmetric construction of polycyclic indazole skeletons via enamine-imine activation and PCET activation was developed by merging organocatalysis with photocatalysis through an asymmetric triple-reaction sequence. In this process, five C-X bonds and five consecutive chiral centers were efficiently constructed. Differently substituted polycyclic indazole deriatives were successfully constructed with satisfactory results under mild conditions.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wen-Long Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|