1
|
Chen X, He Z, Xu S, Zou Y, Zhang Y. Chemical synthesis and application of aryldihydronaphthalene derivatives. RSC Adv 2024; 14:32174-32194. [PMID: 39399251 PMCID: PMC11467718 DOI: 10.1039/d4ra06517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
Aryldihydronaphthalenes (ADHNs) and their derivatives are widely found in many types of natural products, bioactive compounds, and functional materials, and are also important synthetic intermediates in organic chemistry, attracting widespread attention from both organic and pharmaceutical chemists. In the past two decades, the chemical synthesis and biological activity of ADHNs and their derivatives have become two hot spots. This review summarizes the synthetic protocols of ADHN derivatives, introduces some representative examples of the reaction mechanism, and focuses on the research progress of ADHNs in natural product chemistry and chemical biology since 2000.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Zhaolong He
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Shiqiang Xu
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
2
|
Kang TM, Wu YW, Zheng WS, Zhang XH, Zhang XG. The halogensulfonylative cyclizations of 1,6-enynes with sodium sulfinate/TBAX for the regioselective synthesis of tetrahydropyridines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
3
|
Chen X, Luo Z, Chen Y, Zhang Y. Silver(I)-Catalyzed Oxidative Cyclopropanation of 1,6-Enynes: Synthesis of 3-Aza-bicyclo[3.1.0]hexane Derivatives. Org Lett 2022; 24:9200-9204. [PMID: 36484531 DOI: 10.1021/acs.orglett.2c03619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple Ag(I)-catalyzed oxidative cyclopropanation of heteroatom-tethered 1,6-enynes for the establishment of valuable functionalized 3-aza-bicyclo[3.1.0]hexane is presented, which allows the formation of multiple chemical bonds in one step under 20 mol % silver(I) catalysts and air conditions. This approach is highly atom economical, easy to perform, and free of external oxidants and features good to excellent yields and gram-scale synthesis. The preliminary study showed that an uncommon silver carbenoid intermediate might be involved in this process.
Collapse
Affiliation(s)
- Xia Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
4
|
Sim HS, Khanal HD, Lee YR. Fe(III)-Catalyzed Tandem Cyclization of Phenylpropiolamides with 3-Formylchromones for the Construction of 2-Pyridones. J Org Chem 2022; 87:12890-12899. [PMID: 36094877 DOI: 10.1021/acs.joc.2c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient and atom-economic iron(III)-catalyzed three-component heteroannulation reaction between phenylpropiolamides, 3-formylchromones, and water is described for the construction of diversely multifunctionalized 2-pyridones. This protocol allows rapid access to a variety of 2-pyridones bearing an ortho-hydroxybenzoyl and a benzoyl scaffold under operationally simple conditions. The synthetic utility of the synthesized 2-pyridone scaffolds is demonstrated by transformation into biologically interesting complex heterocycles.
Collapse
Affiliation(s)
- Hyo Seon Sim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Mutra MR, Li J, Chen Y, Wang J. Time and Atom Economical Regio‐ and Chemoselective Radical Cyclization of Unactivated 1,6‐Enynes Under Metal‐ and Oxidant‐Free Conditions. Chemistry 2022; 28:e202200742. [DOI: 10.1002/chem.202200742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung 807 Taiwan
| | - Jing Li
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung 807 Taiwan
| | - Yu‐Ting Chen
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung 807 Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital No. 100, Tzyou 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
6
|
Chen X, Zhong C, Duan X, Guan Z, Gu L, Luo Z, Chen Y, Zhang Y. A Removable Acyl Group Promoted the Intramolecular Dehydro-Diels-Alder Reaction of Styrene-Ynes: Highly Chemoselective Synthesis of Aryldihydronaphthalene Derivatives. J Org Chem 2022; 87:6601-6611. [PMID: 35500289 DOI: 10.1021/acs.joc.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A removable acyl group promoted the intramolecular didehydro-Diels-Alder reaction of styrene-ynes under mild reaction conditions is proposed. The reaction is free of metals and catalysts, is easy to perform, and exhibits good functional group tolerance, providing a highly chemoselective approach for obtaining the valuable aryldihydronaphthalene derivatives.
Collapse
Affiliation(s)
- Xia Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan 430062, China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianxian Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
8
|
Lu Y, Duan X, Chen X, Yao M, Chen C, Zhu H, Luo Z, Zhang Y. A mild tetradehydro-Diels-Alder reaction of aryldiyne compounds affords exclusively linear products. Org Biomol Chem 2022; 20:3174-3182. [PMID: 35347333 DOI: 10.1039/d2ob00121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal tetradehydro-Diels-Alder (TDDA) reaction for the synthesis of polysubstituted aromatic compounds remains underestimated probably due to the harsh conditions and multiproduct results. Herein, a mild intramolecular TDDA reaction of aryldiyne compounds is presented with linear naphthalenes only, exhibiting good functional group tolerance. The reaction is easy to operate and amenable to multigram-scale synthesis. From the preliminary work, it was found that the mild conditions may be the key to the completely linear product in the reactions.
Collapse
Affiliation(s)
- Yuling Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Xianxian Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Meng Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| |
Collapse
|
9
|
Yang S, Miaskiewicz S, Bour C, Alix A, Gandon V. Transition structures for the oxy-ene reaction. Chem Commun (Camb) 2022; 58:4751-4754. [PMID: 35332901 DOI: 10.1039/d2cc00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overlooked pericyclic reaction between allyl alcohols and alkenes to form carbonyl compounds is analyzed. It combines the characteristic features of the Alder-ene reaction and of the oxy-Cope rearrangement. This oxy-ene reaction could be involved in biosynthetic pathways.
Collapse
Affiliation(s)
- Shengwen Yang
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France. .,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau cedex, France
| | - Solène Miaskiewicz
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France.
| | - Christophe Bour
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France.
| | - Aurélien Alix
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France.
| | - Vincent Gandon
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France. .,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau cedex, France
| |
Collapse
|
10
|
Antioxidant Molecules Isolated from Edible Prostrate Knotweed: Rational Derivatization to Produce More Potent Molecules. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3127480. [PMID: 35464762 PMCID: PMC9020998 DOI: 10.1155/2022/3127480] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Prostrate knotweed also called Polygonum aviculare is an important edible plant. The polygonum is majorly known for the phenolics and antioxidants. The antioxidants combat the excessive free radicals within the body. The excessive free radicals are implicated in various other diseases like diabetes, Alzheimer's, and inflammation. This study was aimed at exploring the antioxidant bioactives and their derivatizations to produce new molecules with advanced pharmacological features. We have isolated six compounds (1–6) from Polygonum aviculare. Furthermore, rational-based chemical derivatives for compound 5 have been formed for the management of diabetes, Alzheimer's, and inflammation. In preliminary antioxidant studies, all the isolated compounds (1–6) showed potential results against DPPH and ABTS free radicals. Based on the IC50 and chemical nature of the compounds, compound 5 was subjected to derivatization. Keeping the phenolic part of compound 5 unaffected, hydroxy succinimide (5A) and thiazolidinedione (5B) were synthesized. The compound 5A was found to be a potent inhibitor of AChE, BChE, COX-1, COX-2, 5-LOX, and DPPH giving IC50 values of 10.60, 15.10, 13.91, 1.08, 0.71, and 1.05 μM, respectively. The COX-2 selectivity of compound 5A was found at 12.9. The compound 5B was found to be a potent multitarget antidiabetic agent giving IC50 values of 15.34, 21.83, 53.28, and 1.94 μM against α-glucosidase, α-amylase, protein tyrosine phosphatase 1B, and DPPH. Docking studies were performed to manipulate the binding interactions. The docking pose of all the tested compounds was found to have increased binding affinity against all tested targets that supported the in vitro results. Our results showed that Polygonum aviculare is a rich source of antioxidant compounds. The two new derivatives have enhanced pharmacological features to treat diabetes, inflammation, and Alzheimer's disease.
Collapse
|
11
|
Suri Babu U, Singam MKR, Kumar MN, Nanubolu JB, Sridhar Reddy M. Palladium-Catalyzed Carbo-Aminative Cyclization of 1,6-Enynes: Access to Napthyridinone Derivatives. Org Lett 2022; 24:1598-1603. [PMID: 35191708 DOI: 10.1021/acs.orglett.2c00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1,6-Enynes have recently stimulated enormous attention toward paving the way to unique cascade cyclizations offering complex cyclic motifs from linear substrates. We describe herein a general approach to napthyridinones via the Pd-catalyzed annulation of 1,6-enynes with 2-iodoanilines. This protocol represents a rare carbo-aminative annulative cyclization via the 6-endo-trig mode, subduing the well-documented exo-trig/dig cyclizations. The regioselective aryl palladation of alkyne followed by Heck-type intramolecular coupling before isomerization were key in realizing this cascade.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Muniganti Naveen Kumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
12
|
Ma C, Wang Y, Chen G, Li J, Jiang Y, Zhang X, Fan X. Divergent construction of 3-(indol-2-yl)succinimide/maleimide and fused benzodiazepine skeletons from 2-(1 H-indol-1-yl)anilines and maleimides. Org Chem Front 2022. [DOI: 10.1039/d2qo00779g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Divergent construction of 3-(indol-2-yl)succinimide/maleimide and indoyl/pyrrolyl fused benzodiazepine skeletons from 2-(1H-indol-1-yl)anilines and maleimides is presented.
Collapse
Affiliation(s)
- Chunhua Ma
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guang Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingyi Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|