1
|
Kudo Y, Konoki K, Yotsu-Yamashita M. Identification of γ-butyrolactone signalling molecules in diverse actinomycetes using resin-assisted isolation and chemoenzymatic synthesis. RSC Chem Biol 2025; 6:630-641. [PMID: 40046449 PMCID: PMC11877004 DOI: 10.1039/d5cb00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Actinomycetes are prolific producers of secondary metabolites with diverse bioactivities. Secondary metabolism in actinomycetes is regulated by signalling molecules, often termed "bacterial hormones." In Streptomyces griseus, the γ-butyrolactone (GBL) A-factor (1) plays a key role in regulating secondary metabolism, including streptomycin production. The widespread presence of afsA, the gene encoding A-factor synthase, suggests that GBLs are a major class of signalling molecules in actinomycetes. However, their identification is hindered by the requirement for large-scale cultures. This study presents two methodologies for identifying natural GBLs. First, a resin-assisted culture method combined with MS-guided screening enabled the isolation and structural determination of GBLs (2-5) from smaller-scale cultures. Second, a chemoenzymatic synthesis method involving one-pot three enzymatic reactions was developed, allowing the production of GBL standards (10a-10l). Using these standards, HR-LCMS analysis of 31 strains across 10 actinomycetes genera identified GBLs in nearly half of the tested strains, including genera where GBLs were detected for the first time. Chiral HPLC analysis further revealed the presence of the (3S)-isomer of GBL (11), an enantiomer of known GBLs. This study uncovers the widespread distribution and structural diversity of GBLs among actinomycetes, providing insights into their regulatory roles and potential for activating secondary metabolism, which may facilitate the discovery of new natural products.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8578 Japan
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8572 Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8572 Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8572 Japan
| |
Collapse
|
2
|
Caudill V, Ralph P. Genetic Architecture, Spatial Heterogeneity, and the Arms Race between Newts and Snakes: Exploring Coevolution with Simulations. Am Nat 2025; 205:184-202. [PMID: 39913933 DOI: 10.1086/733456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
AbstractCoevolution between two species can lead to exaggerated phenotypes that vary in a correlated manner across space. However, the conditions under which we expect such spatially varying coevolutionary patterns in polygenic traits are not well understood. We investigate the coevolutionary dynamics between two species undergoing reciprocal adaptation across space and time using simulations inspired by the Taricha newt/Thamnophis garter snake system. One striking observation from this system is that newts in some areas carry much more tetrodotoxin than in other areas, and garter snakes that live near more toxic newts tend to be more resistant to this toxin, a correlation seen across several broad geographic areas. Furthermore, snakes seem to be "winning" the coevolutionary arms race, that is, having a high level of resistance compared with local newt toxicity, despite substantial variation in both toxicity and resistance across the range. We explore how possible genetic architectures of the toxin and resistance traits would affect the coevolutionary dynamics by manipulating both mutation rate and effect size of mutations across many simulations. We find that coevolutionary dynamics alone were not sufficient in our simulations to produce the striking mosaic of levels of toxicity and resistance observed in nature, but simulations with ecological heterogeneity (in trait costliness or interaction rate) did produce such patterns. We also find that differences in polygenicity do not seem sufficient to explain the observation that snakes seem to be winning.
Collapse
|
3
|
Ueda H, Ito M, Yonezawa R, Hayashi K, Tomonou T, Kashitani M, Oyama H, Shirai K, Suo R, Yoshitake K, Kinoshita S, Asakawa S, Itoi S. Japanese Planocerid Flatworms: Difference in Composition of Tetrodotoxin and Its Analogs and the Effects of Ingestion by Toxin-Bearing Fishes in the Ryukyu Islands, Japan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:500-510. [PMID: 38630353 PMCID: PMC11178581 DOI: 10.1007/s10126-024-10312-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 06/15/2024]
Abstract
Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Hayashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Taiga Tomonou
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kyoko Shirai
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
4
|
Yamaki K, Sato K, Kudo Y, Cho Y, Konoki K, Takatani T, Arakawa O, Kawatsu K, Yotsu-Yamashita M. The quite low cross-reactivity of Kawatsu's anti-tetrodotoxin monoclonal antibody to 5,6,11-trideoxytetrodotoxin, 11-nortetrodotoxin-6(S)-ol, and 11-oxotetrodotoxin, the major tetrodotoxin analogues in pufferfish. Toxicon 2023; 226:107081. [PMID: 36898506 DOI: 10.1016/j.toxicon.2023.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The monoclonal antibody against tetrodotoxin (TTX), prepared by Kawatsu et al. (1997), has been used in several TTX-related studies. Herein, we confirmed the quite low cross-reactivity of this antibody to three major TTX analogues in pufferfish using competitive ELISA: 5,6,11-trideoxyTTX (<2.2%), 11-norTTX-6(S)-ol (<0.3%), and 11-oxoTTX (<1.5%), with reactivity against TTX being 100%. We further confirmed that the presence of these analogues did not cause a marked overestimation of TTX in pufferfish extracts using competitive ELISA.
Collapse
Affiliation(s)
- Keita Yamaki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Kyoka Sato
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki, 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki, 852-8521, Japan
| | - Kentaro Kawatsu
- Osaka Institute of Public Health, 1-3-3 Nakamichi, Higashinari-ku, Osaka, Osaka, 537-0025, Japan.
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
5
|
Unabara D, Nishijima M. Complete Structure Assignment of Azathioprine as a Proton-Deficient Nucleic Acid Analogue Using 1H- 13C Long-Range Heteronuclear Single Quantum Multiple Bond Correlation. J Org Chem 2023; 88:653-657. [PMID: 36563180 DOI: 10.1021/acs.joc.2c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this Note, the successful structural assignment of a proton-deficient nucleic acid analogue using the 1H-13C long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) technique is described. LR-HSQMBC is a 2D NMR technique for the sensitive detection of weak C-H spin couplings. The immunosuppressant drug, azathioprine, served as the target compound. The LR-HSQMBC measurements revealed the existence of covalent bonds between the purine and imidazole rings based on observations of 5JCH and 6JCH with good sensitivity.
Collapse
Affiliation(s)
- Daisuke Unabara
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masaki Nishijima
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
6
|
Yaegashi Y, Kudo Y, Ueyama N, Onodera KI, Cho Y, Konoki K, Yotsu-Yamashita M. Isolation and Biological Activity of 9- epiTetrodotoxin and Isolation of Tb-242B, Possible Biosynthetic Shunt Products of Tetrodotoxin from Pufferfish. JOURNAL OF NATURAL PRODUCTS 2022; 85:2199-2206. [PMID: 35994072 DOI: 10.1021/acs.jnatprod.2c00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tetrodotoxin (TTX, 1) is a potent voltage-gated sodium channel blocker detected in certain marine and terrestrial organisms. We report here a new TTX analogue, 9-epiTTX (2), and a TTX-related compound, Tb-242B (4), isolated from the pufferfish Takifugu flavipterus and Dichotomyctere ocellatus, respectively. NMR analysis suggested that 2 exists as a mixture of hemilactal and 10,8-lactone forms, whereas other reported TTX analogues are commonly present as an equilibrium mixture of hemilactal and 10,7-lactone forms. Compound 2 and TTX were confirmed not to convert to each other by incubation under neutral and acidic conditions at 37 °C for 24 h. Compound 4 was identified as the 9-epimer of Tb-242A (3), previously reported as a possible biosynthetic precursor of TTX. Compound 4 was partially converted to 3 by incubation in a neutral buffer at 37 °C for 7 days, whereas 3 was not converted to 4 under this condition. Compound 2 was detected in several TTX-containing marine animals and a newt. Mice injected with 600 ng of 2 by intraperitoneal injection did not show any adverse symptoms, suggesting that the C-9 configuration in TTX is critical for its biological activity. Based on the structures, 2 and 4 were predicted to be shunt products for TTX biosynthesis.
Collapse
Affiliation(s)
- Yuji Yaegashi
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Nozomi Ueyama
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Ken-Ichi Onodera
- Faculty of Agriculture and Marine Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
7
|
Kudo Y, Konoki K, Yotsu-Yamashita M. Mass spectrometry-guided discovery of new analogues of bicyclic phosphotriester salinipostin and evaluation of their monoacylglycerol lipase inhibitory activity. Biosci Biotechnol Biochem 2022; 86:1333-1342. [PMID: 35918181 DOI: 10.1093/bbb/zbac131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022]
Abstract
Natural products containing the highly unusual phosphotriester ring are known to be potent serine hydrolase inhibitors. The long-chain bicyclic enol-phosphotriester salinipostins (SPTs) from the marine actinomycete Salinispora have been identified as selective antimalarial agents. A potential regulatory function has been suggested for phosphotriesters based on their structural relationship with actinomycete signaling molecules and the prevalence of spt-like biosynthetic gene clusters across actinomycetes. In this study, we established a mass spectrometry-guided screening method for phosphotriesters focusing on their characteristic fragment ions. Applying this screening method to the SPT producer Salinispora tropica CNB-440, new SPT analogues (4-6) were discovered and their structures were elucidated by spectroscopic analyses. Previously known and herein-identified SPT analogues inhibited the activity of human monoacylglycerol lipase (MAGL), a key serine hydrolase in the endocannabinoid system, in the nanomolar range. Our method could be applied to the screening of phosphotriesters, potential serine hydrolase inhibitors and signaling molecules.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan.,Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Suo R, Tanaka M, Oyama H, Kojima Y, Yui K, Sakakibara R, Nakahigashi R, Adachi M, Nishikawa T, Sugita H, Itoi S. Tetrodotoxins in the flatworm Planocera multitentaculata. Toxicon 2022; 216:169-173. [PMID: 35843466 DOI: 10.1016/j.toxicon.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
The marine polyclad flatworm Planocera multitentaculata is known to possess high levels of tetrodotoxin (TTX), but the presence of TTX analogues in the species has been unexplored. In this study, TTX and several analogues such as 5,6,11-trideoxyTTX, monodeoxyTTXs, dideoxyTTXs, and 11-norTTX-6(S)-ol were identified in three adults and egg plates of P. multitentaculata using high resolution liquid chromatography-mass spectrometry (HR-LC/MS) for the first time.
Collapse
Affiliation(s)
- Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Makoto Tanaka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yuki Kojima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kentaro Yui
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Sakakibara
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
9
|
Gall BG, Stokes AN, Brodie ED, Brodie ED. Tetrodotoxin levels in lab-reared Rough-Skinned Newts (Taricha granulosa) after 3 years and comparison to wild-caught juveniles. Toxicon 2022; 213:7-12. [DOI: 10.1016/j.toxicon.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
|
10
|
Pearson KC, Tarvin RD. A review of chemical defense in harlequin toads (Bufonidae: Atelopus). Toxicon X 2022; 13:100092. [PMID: 35146414 PMCID: PMC8801762 DOI: 10.1016/j.toxcx.2022.100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022] Open
Abstract
Toads of the genus Atelopus are chemically defended by a unique combination of endogenously synthesized cardiotoxins (bufadienolides) and neurotoxins which may be sequestered (guanidinium alkaloids). Investigation into Atelopus small-molecule chemical defenses has been primarily concerned with identifying and characterizing various forms of these toxins while largely overlooking their ecological roles and evolutionary implications. In addition to describing the extent of knowledge about Atelopus toxin structures, pharmacology, and biological sources, we review the detection, identification, and quantification methods used in studies of Atelopus toxins to date and conclude that many known toxin profiles are unlikely to be comprehensive because of methodological and sampling limitations. Patterns in existing data suggest that both environmental (toxin availability) and genetic (capacity to synthesize or sequester toxins) factors influence toxin profiles. From an ecological and evolutionary perspective, we summarize the possible selective pressures acting on Atelopus toxicity and toxin profiles, including predation, intraspecies communication, disease, and reproductive status. Ultimately, we intend to provide a basis for future ecological, evolutionary, and biochemical research on Atelopus.
Collapse
Affiliation(s)
- Kannon C. Pearson
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Hanifin CT, Kudo Y, Yotsu-Yamashita M. Chemical Ecology of the North American Newt Genera Taricha and Notophthalmus. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 118:101-130. [PMID: 35416518 DOI: 10.1007/978-3-030-92030-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The North American newt genera Taricha and Notophthalmus (order Caudata) are well known for the combination of potent toxicity, aposematic coloration, and striking defense postures that protects these animals from predation. This suite of traits is centered around the neurotoxin tetrodotoxin, which causes paralysis and death in metazoans by disrupting the initiation and propagation of electrical signals in the nerves and muscles. Tetrodotoxin defends newts from predation across multiple life history stages and its role in generating arms-race coevolution between Taricha newts and garter snake (genus Thamnophis) predators is well studied. However, understanding the broader picture of chemical defenses in Taricha and Notophthalmus requires an expanded comprehension of the defensive chemical ecology of tetrodotoxin that includes possible coevolutionary interactions with insect egg predators, protection against parasites, as well as mimicry complexes associated with tetrodotoxin and aposematic coloration in both genera. Herein the authors review what is known about the structure, function, and pharmacology of tetrodotoxin to explore its evolution and chemical ecology in the North American newt. Focus is made specifically on the origin and possible biosynthesis of tetrodotoxin in these taxa as well as providing an expanded picture of the web of interactions that contribute to landscape level patterns of toxicity and defense in Taricha and Notophthalmus.
Collapse
Affiliation(s)
- Charles T Hanifin
- Department of Biology, Utah State University, 320 N. Aggie Blvd, Vernal, UT, 84078, USA.
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science & Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|