1
|
Raymond MJF, Rakotondraibe HL. Recent Updates on Terpenoids and Other Bioactive Constituents of Marine Sponges. Molecules 2025; 30:1112. [PMID: 40076335 PMCID: PMC11901466 DOI: 10.3390/molecules30051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Marine sponges are a promising source of bioactive secondary metabolites, contributing hundreds of novel compounds per year to natural product research, each with diverse chemical and biological properties. We have chosen to highlight marine natural products that exhibited unique structural features and/or significant bioactivity. The most common report of pharmacological significance was cytotoxicity, with antimicrobial and enzyme inhibition activities following, and mentions of other attributes, such as anti-inflammation, neuroprotection, and anti-biofilm. This review describes newly isolated constituents from sponges between 2020 and 2023 alongside their relevant pharmacological activity. The isolation, structures, and biological properties of 218 unique secondary metabolites from various chemical families, including terpenoids, peptides, and alkaloids from marine sponges, are covered.
Collapse
|
2
|
Zhang ZL, Xu HN, Gong CM, Li YZ, Li YM, Song XM, Wang R, Zhang DD. The Sources, Structures and Cytotoxicity of Animal-Derived Bisindole Compounds. Chem Biodivers 2024; 21:e202401165. [PMID: 38973453 DOI: 10.1002/cbdv.202401165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Bisindole compounds constitute a significant class of natural compounds distinguished by their characteristic bisindole structure and renowned for their anticancer properties. Over the past four decades, researchers have isolated 229 animal-derived bisindole compounds (ADBCs) from various animals. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of ADBCs. This review also summarizes the structureactivity relationship (SAR) studies associated with the cytotoxicity of these compounds and explores the druggability of these compounds. In summary, our objective is to provide an overview of the research progress concerning ADBCs, with the aim of fostering their continued development and utilization.
Collapse
Affiliation(s)
- Zi-Long Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Hao-Nan Xu
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Chuan-Ming Gong
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Yi-Ming Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Rui Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| |
Collapse
|
3
|
Gribble GW. A Survey of Recently Discovered Naturally Occurring Organohalogen Compounds. JOURNAL OF NATURAL PRODUCTS 2024; 87:1285-1305. [PMID: 38375796 DOI: 10.1021/acs.jnatprod.3c00803] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
4
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
5
|
Devkar HU, Thakur NL, Kaur P. Marine-derived antimicrobial molecules from the sponges and their associated bacteria. Can J Microbiol 2023; 69:1-16. [PMID: 36288610 DOI: 10.1139/cjm-2022-0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antimicrobial resistance (AMR) is one of the leading global health issues that demand urgent attention. Very soon the world will have to bear the consequences of increased drug resistance if new anti-infectives are not pumped into the clinical pipeline in a short period. This presses on the need for novel chemical entities, and the marine environment is one such hotspot to look for. The Ocean harbours a variety of organisms, of which from this aspect, "Sponges (Phylum Porifera)" are of particular interest. To tackle the stresses faced due to their sessile and filter-feeding lifestyle, sponges produce various bioactive compounds, which can be tapped for human use. The sponges harbour several microorganisms of different types and in most cases; the microbial symbionts are the actual producers of the bioactive compounds. This review describes the alarming need for the development of new antimicrobials and how marine sponges can contribute to this. Selected antimicrobial compounds from the marine sponges and their associated bacteria have been described. Additionally, measures to tackle the supply problem have been covered, which is the primary obstacle in marine natural product drug discovery.
Collapse
Affiliation(s)
- Heena U Devkar
- CSIR- National Institute of Oceanography, Dona Paula 403004, Goa, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Narsinh L Thakur
- CSIR- National Institute of Oceanography, Dona Paula 403004, Goa, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, Bangalore 561203, Karnataka, India
| |
Collapse
|
6
|
Sugawara K, Kanki D, Watanabe R, Matsushima R, Ise Y, Yokose H, Morii Y, Yamawaki N, Ninomiya A, Okada S, Matsunaga S. Aciculitin D, a cytotoxic heterodetic cyclic peptide from a Poecillastra sp. marine sponge. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zhou MH, Luo XC, Zhao HM, Lu JR, Dai Y, Yu Y, Zhang L, Lin HW, Yang F. New Spiro-Sesquiterpenoids from the Marine Sponge Myrmekioderma sp. Chem Biodivers 2022; 19:e202200455. [PMID: 35648483 DOI: 10.1002/cbdv.202200455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Three new spiro-sesquiterpenoids, myrmekiones A-C (1-3), were isolated from the marine sponge Myrmekioderma sp. collected from the South China Sea. The structures of 1-3 were experimentally illuminated though comprehensive NMR spectra, X-ray diffraction analysis and calculated ECD. These three compounds possessed a special spiro skeleton. Compound 1 was characterized by a chamigrane-type structure, it is the first time to obtain the single-crystal of this type of oil compounds. 2 and 3 were a pair of diastereoisomers that possessed an acorane skeleton. This study expands the chemical diversity of marine origin spiro-metabolites.
Collapse
Affiliation(s)
- Mei-Hong Zhou
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Xiang-Chao Luo
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hui-Min Zhao
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jing-Rong Lu
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Dai
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Yong Yu
- Key Laboratory of Polar Science, Ministry of Natural Resources, Antarctic Great Wall Ecology, National Observation and Research Station, Polar Research Institute of China, Shanghai, 200136, China.,School of Oceanography (SOO), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fan Yang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
8
|
Marine-Derived Indole Alkaloids and Their Biological and Pharmacological Activities. Mar Drugs 2021; 20:md20010003. [PMID: 35049859 PMCID: PMC8781670 DOI: 10.3390/md20010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
Novel secondary metabolites from marine macroorganisms and marine-derived microorganisms have been intensively investigated in the last few decades. Several classes of compounds, especially indole alkaloids, have been a target for evaluating biological and pharmacological activities. As one of the most promising classes of compounds, indole alkaloids possess not only intriguing structural features but also a wide range of biological/pharmacological activities including antimicrobial, anti-inflammatory, anticancer, antidiabetic, and antiparasitic activities. This review reports the indole alkaloids isolated during the period of 2016–2021 and their relevant biological/pharmacological activities. The marine-derived indole alkaloids reported from 2016 to 2021 were collected from various scientific databases. A total of 186 indole alkaloids from various marine organisms including fungi, bacteria, sponges, bryozoans, mangroves, and algae, are described. Despite the described bioactivities, further evaluation including their mechanisms of action and biological targets is needed to determine which of these indole alkaloids are worth studying to obtain lead compounds for the development of new drugs.
Collapse
|
9
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|