1
|
Luo J, Zhao JX, He T, Liu P, Li CT. Phosphoric Acid Catalyzed N-Addition/ C-Addition Reaction of 3-Vinyl Indoles with Pyrazole/Pyrazolone to Construct Pyrazole-Substituted 3-(1-Heteroarylethyl)-indole Scaffolds. J Org Chem 2024; 89:6000-6015. [PMID: 38618901 DOI: 10.1021/acs.joc.3c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Developing a highly efficient atom-economic method for the preparation of 3-(1-heteroarylethyl)-indole scaffolds is of significant value in pharmaceutical and agricultural chemistry. Herein, a phosphoric acid-catalyzed N-addition reaction of 3-vinyl indoles with pyrazoles and C-addition reaction of 3-vinyl indoles with pyrazolones were developed. A series of pyrazole-substituted 3-(1-heteroarylethyl)-indole scaffolds were synthesized in excellent yields (up to 99% yield) under mild reaction conditions. A reasonable reaction mechanism was proposed to explain the experimental results.
Collapse
Affiliation(s)
- Jie Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Ji-Xing Zhao
- Analysis and Testing Center, Shihezi University, Xinjiang 832003, P. R. China
| | - Tao He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Ping Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| | - Chun-Tian Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China
| |
Collapse
|
2
|
Villarreal-Parra M, Di Gresia GE, Labadie GR, Vallejos MM. Understanding the Fate of the Banert Cascade of Propargylic Azides: Sigmatropic versus Prototropic Pathway. J Org Chem 2023. [PMID: 37418758 DOI: 10.1021/acs.joc.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The Banert cascade is an efficient synthetic strategy for obtaining 4,5-disubstituted 1,2,3-triazoles. The reaction can proceed via a sigmatropic or prototropic mechanism depending on the substrate and the conditions. In this work, the mechanisms of both pathways from propargylic azides with different electronic features were investigated using density functional theory, quantum theory of atoms in molecules, and natural bond orbital approaches. The calculated energy barriers were consistent with the experimental data. Three patterns of electron density distribution on the transition structures were observed, which reflected the behaviors of the reactants in the Banert cascade. The stronger conjugative effects were associated with lower/higher free activation energies of sigmatropic/prototropic reactions, respectively. A clear relationship between the accumulation of the charge at the C3 atom of propargylic azides with the energy barriers for prototropic reactions was found. Thus, the obtained results would allow the prediction of the reaction's course by evaluating reactants.
Collapse
Affiliation(s)
- Miguel Villarreal-Parra
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Gabriel E Di Gresia
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Margarita M Vallejos
- Instituto de Química Básica y Aplicada del NEA (IQUIBA-NEA, UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, 3400 Corrientes, Argentina
| |
Collapse
|
3
|
Alexander JR, Kevorkian PV, Topczewski JJ. Intercepting the Banert cascade with nucleophilic fluorine: direct access to α-fluorinated NH-1,2,3-triazoles. Chem Commun (Camb) 2021; 57:5024-5027. [PMID: 33890592 DOI: 10.1039/d1cc01179k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of propargylic azides with silver(i) fluoride in acetonitrile was found to yield α-fluorinated NH-1,2,3-triazoles via the Banert cascade. The reaction was regioselective and the products result from an initial [3,3] rearrangement. The reaction is demonstrated on >15 examples with yields ranging from 37% to 86%.
Collapse
Affiliation(s)
- J R Alexander
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA.
| | - P V Kevorkian
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA.
| | - J J Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|