1
|
Yang Y, Zhong S, Ma D, Zhao W, Wang G. Nickel-Catalyzed and Tetrahydroxydiboron-Mediated Allylation of Aldehydes with Allyl Alcohols. J Org Chem 2025; 90:3653-3658. [PMID: 39899805 DOI: 10.1021/acs.joc.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The allylation of carbonyl compounds to form homoallylic alcohols represents one of the significant synthetic transformations. In this letter, we describe a new method for the allylation of aldehydes with allyl alcohols facilitated by nickel chloride and tetrahydroxydiboron. This approach offers a mild and straightforward procedure for the synthesis of homoallylic alcohols from aldehydes and ketones.
Collapse
Affiliation(s)
- Yingfan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Siyi Zhong
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Daofan Ma
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
2
|
Mondal P, Dutta P, Mani G. Mo(0) carbonyl complexes bearing the bis(3,5-dimethylpyrazole) ligand: catalysis of the regioselective [2 + 2 + 2] cycloaddition of terminal alkynes to synthesize 1,3,5-isomers. Dalton Trans 2025; 54:2654-2663. [PMID: 39785997 DOI: 10.1039/d4dt02725f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The reaction between 1,3-bis(3,5-dimethylpyrazolylmethyl)hexahydropyrimidine L and Mo(CO)6 in CH3CN at 130 °C afforded a binuclear Mo(0) complex 1 containing a new macrocycle formed upon C-N bond cleavage in L in good yield. Conversely, a clean reaction takes place between L and [Mo(CO)4(COD)] in THF at 60 °C to give a new metalloligand complex [Mo(CO)4(κ2-N,N-L)] 2 containing a spectator pyrazole arm in 83% yield. Their structures were determined by X-ray diffraction methods, and a plausible mechanism is proposed for the C-N bond cleavage leading to complex 1. In view of a limited number of reports of catalysts for the synthesis of 1,3,5-trisubstituted benzene from the [2 + 2 + 2] cycloaddition of terminal alkynes, the catalytic application of complex 2 was explored. Interestingly, 14 terminal alkynes including those containing polar functional groups such as OH, NH2, and CHO among others were converted into their 1,3,5-isomers as the major products with a high regioselectivity ratio of >90 : 10 (1,3,5-/1,2,4-isomer) for most cases.
Collapse
Affiliation(s)
- Palash Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India.
| | - Poulami Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India.
| | - Ganesan Mani
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India.
| |
Collapse
|
3
|
Demirci S, Polat O, Sahiner N. Hydrogen Production from Chemical Hydrides via Porous Carbon Particle Composite Catalyst Embedding of Metal Nanoparticles. MICROMACHINES 2025; 16:172. [PMID: 40047647 PMCID: PMC11857494 DOI: 10.3390/mi16020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/09/2025]
Abstract
Porous carbon particles (PCPs) prepared from sucrose via the hydrothermal method and its modified forms with polyethyleneimine (PEI) as PCP-PEI were used as templates as in situ metal nanoparticles as M@PCP and M@PCP-PEI (M:Co, Ni, or Cu), respectively. The prepared M@PCP and M@PCP-PEI composites were used as catalysts in the hydrolysis of NaBH4 and NH3BH3 to produce hydrogen (H2). The amount of Co nanoparticles within the Co@PCP-PEI structure was steadily increased via multiple loading/reducing cycles, e.g., from 29.8 ± 1.1 mg/g at the first loading/reducing cycles to 44.3 ± 4.9 mg/g after the third loading/reducing cycles. The Co@PCP-PEI catalyzed the hydrolysis of NaBH4 within 120 min with 251 ± 1 mL H2 production and a 100% conversion ratio with a 3.8 ± 0.3 mol H2/(mmol cat·min) turn-over frequency (TOF) and a lower activation energy (Ea), 29.3 kJ/mol. In addition, the Co@PCP-PEI-catalyzed hydrolysis of NH3BH3 was completed in 28 min with 181 ± 1 mL H2 production at 100% conversion with a 4.8 ± 0.3 mol H2/(mmol cat·min) TOF value and an Ea value of 32.5 kJ/mol. Moreover, Co@PCP-PEI composite catalysts were afforded 100% activity up to 7 and 5 consecutive uses in NaBH4 and NH3B3 hydrolysis reactions, respectively, with all displaying 100% conversions for both hydrolysis reactions in the 10 successive uses of the catalyst.
Collapse
Affiliation(s)
- Sahin Demirci
- Department of Food Engineering, Faculty of Engineering, Istanbul Aydin University, Florya Halit Aydin Campus, Istanbul 34295, Turkey;
| | - Osman Polat
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA;
| | - Nurettin Sahiner
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA;
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC21, Tampa, FL 33612, USA
- Department of Bioengineering, U.A. Whittaker College of Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| |
Collapse
|
4
|
Alshubramy MA, Alamry KA, Hussein MA. An overview of the synthetic strategies of C3-symmetric polymeric materials containing benzene and triazine cores and their biomedical applications. RSC Adv 2023; 13:14317-14339. [PMID: 37179987 PMCID: PMC10170496 DOI: 10.1039/d3ra01336g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
C3-symmetric star-shaped materials are an emerging category of porous organic polymers with distinctive properties such as permanent porosity, good thermal and chemical stability, high surface area, and appropriate functionalization that promote outstanding potential in various applications. This review is mostly about constructing benzene or s-triazine rings as the center of C3-symmetric molecules and using side-arm reactions to add functions to these molecules. Over and above this, the performance of various polymerization processes has been additionally investigated in detail, including the trimerization of alkynes or aromatic nitriles, polycondensation of monomers with specific functional groups, and cross-coupling building blocks with benzene or triazine cores. Finally, the most recent progress in biomedical applications for C3-symmetric materials based on benzene or s-triazine have been summarized.
Collapse
Affiliation(s)
- Maha A Alshubramy
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
5
|
Arepally S, Nandhakumar P, González-Montiel GA, Dzhaparova A, Kim G, Ma A, Nam KM, Yang H, Ha-Yeon Cheong P, Park JK. Unified Electrochemical Synthetic Strategy for [2 + 2 + 2] Cyclotrimerizations: Construction of 1,3,5- and 1,2,4-Trisubstituted Benzenes from Ni(I)-Mediated Reduction of Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sagar Arepally
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ponnusamy Nandhakumar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | | | - Alina Dzhaparova
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Gyeongho Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ahyeon Ma
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ki Min Nam
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, Corvallis 97331, United States
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
6
|
Hou C, Ma Y, Zhang Y, Xu H, Wu Y, Zhao J, Wang Y, Liu Y. Ni‐Catalyzed Regioselective Cyclotrimerization of Internal Esteryl Alkynes towards Polysubstituted Benzene Rings. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Hou
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Yan Ma
- Jilin Baojinng Carbon Materials Co. Production Department CHINA
| | - Yongqi Zhang
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Huiling Xu
- Jilin Baojing Carbon Materials Co. Production Department CHINA
| | - Yuanqi Wu
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Jinbo Zhao
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Yuchao Wang
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Yu Liu
- Changchun University of Technology College of Chemistry and Life Science Yan'an Road 2005 130012 Changchun CHINA
| |
Collapse
|
7
|
Zhang F, An Y, Liu J, Du G, Cai Z, He L. Assembly of unsymmetrical 1,3,5-triarylbenzenes via tandem reaction of β-arylethenesulfonyl fluorides and α-cyano-β-methylenones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal-free tandem reaction of β-arylethenesulfonyl fluorides and α-cyano-β-methylenones has been revealed. In the presence of cesium carbonate, 2-arylethenesulfonyl fluorides react with α-cyano-β-methylenones through a tandem Diels-Alder cycloaddition/sulfur (VI) fluoride...
Collapse
|
8
|
Fan JT, Fan XH, Gao CY, Wei J, Yang LM. Regioselectively switchable alkyne cyclotrimerization catalyzed by the system of Ni(II)/bidentate P-ligand/Zn with ZnI 2 as additive. Org Chem Front 2022. [DOI: 10.1039/d1qo01913a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple catalyst system of Ni(PPh3)2Cl2/dppb or dppm/Zn can effect an efficient and regioselectively controlled alkyne cyclotrimerization to form 1,2,4- (with no additive) or 1,3,5-regioisomers (with the use of ZnI2...
Collapse
|
9
|
Selective Ni-catalyzed cross-electrophile coupling of alkynes, fluoroalkyl halides, and vinyl halides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Sen A, Sato T, Ohno A, Baek H, Muranaka A, Yamada YMA. Polymer-Supported-Cobalt-Catalyzed Regioselective Cyclotrimerization of Aryl Alkynes. JACS AU 2021; 1:2080-2087. [PMID: 34841419 PMCID: PMC8611791 DOI: 10.1021/jacsau.1c00360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 05/04/2023]
Abstract
A convoluted poly(4-vinylpyridine) cobalt(II) (P4VP-CoCl2) system was developed as a stable and reusable heterogeneous catalyst. The local structure near the Co atom was determined on the basis of experimental data and theoretical calculations. This immobilized cobalt catalyst showed high selectivity and catalytic activity in the [2 + 2 + 2] cyclotrimerization of terminal aryl alkynes. With 0.033 mol % P4VP-CoCl2, the regioselective formation of 1,3,5-triarylbenzene was realized without 1,2,4-triarylbenzene formation. Further, a multigram-scale (11 g) reaction proceeded efficiently. In addition, the polymer-supported catalyst was successfully recovered and used three times. X-ray photoelectron spectroscopy analysis of the recovered catalyst suggested that cobalt was in the +2 oxidation state. The 1,3,5-triarylbenzene derivatives were applied to the synthesis of a molecular beam electron resist and a polycyclic aromatic hydrocarbon.
Collapse
Affiliation(s)
- Abhijit Sen
- Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takuma Sato
- Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Aya Ohno
- Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Heeyoel Baek
- Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Atsuya Muranaka
- Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yoichi M. A. Yamada
- Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Ratovelomanana-Vidal V, Matton P, Huvelle S, Haddad M, Phansavath P. Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1719831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractMetal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although selectivity issues can still be challenging for intermolecular reactions involving the cross-[2+2+2] cycloaddition of two or three different alkynes and various strategies have been developed to attain high selectivities. Furthermore, enantioselective [2+2+2] cycloaddition is an efficient means to create central, axial, and planar chirality and a variety of chiral organometallic complexes can be used for asymmetric transition-metal-catalyzed inter- and intramolecular reactions. This review summarizes the recent advances in the field of [2+2+2] cycloaddition.1 Introduction2 Formation of Carbocycles2.1 Intermolecular Reactions2.1.1 Cyclotrimerization of Alkynes2.1.2 [2+2+2] Cycloaddition of Two Different Alkynes2.1.3 [2+2+2] Cycloaddition of Alkynes/Alkenes with Alkenes/Enamides2.2 Partially Intramolecular [2+2+2] Cycloaddition Reactions2.2.1 Rhodium-Catalyzed [2+2+2] Cycloaddition2.2.2 Molybdenum-Catalyzed [2+2+2] Cycloaddition2.2.3 Cobalt-Catalyzed [2+2+2] Cycloaddition2.2.4 Ruthenium-Catalyzed [2+2+2] Cycloaddition2.2.5 Other Metal-Catalyzed [2+2+2] Cycloaddition2.3 Totally Intramolecular [2+2+2] Cycloaddition Reactions3 Formation of Heterocycles3.1 Cycloaddition of Alkynes with Nitriles3.2 Cycloaddition of 1,6-Diynes with Cyanamides3.3 Cycloaddition of 1,6-Diynes with Selenocyanates3.4 Cycloaddition of Imines with Allenes or Alkenes3.5 Cycloaddition of (Thio)Cyanates and Isocyanates3.6 Cycloaddition of 1,3,5-Triazines with Allenes3.7 Cycloaddition of Aldehydes with Enynes or Allenes/Alkenes3.8 Totally Intramolecular [2+2+2] Cycloaddition Reactions4 Conclusion
Collapse
|
12
|
Song S, Li C, Liu T, Zhang P, Wang X. H-BPin/KO tBu Promoted Activation of Cobalt Salt to a Heterotopic Catalyst for Highly Selective Cyclotrimerization of Alkynes. Org Lett 2021; 23:6925-6930. [PMID: 34428067 DOI: 10.1021/acs.orglett.1c02493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mixture of HBPin with KOtBu was found to activate cobalt salt to form a heterotopic cobalt species that is highly active for catalytic intermolecular trimerization of alkynes. This protocol affords 1,2,4-regioisomers in good yields with high regioselectivities under mild conditions. These salient features, together with the operational simplicity and high efficiency, as well as obviating the use of any costly and/or air sensitive ligands, renders the protocol promising for practical applications.
Collapse
Affiliation(s)
- Shuo Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Avenue, High-Tech District, Zhengzhou 450001 People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Chuhan Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Tianfen Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Avenue, High-Tech District, Zhengzhou 450001 People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Panke Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Avenue, High-Tech District, Zhengzhou 450001 People's Republic of China.,Zhengzhou Sino-Crystal Diamond Co., Ltd., 20 Bitao Road, Zhengzhou 450001, People's Republic of China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
| |
Collapse
|