1
|
Zeng Q, Nirwan Y, Benet-Buchholz J, Kleij AW. An Expedient Radical Approach for the Decarboxylative Synthesis of Stereodefined All-Carbon Tetrasubstituted Olefins. Angew Chem Int Ed Engl 2024; 63:e202403651. [PMID: 38619179 DOI: 10.1002/anie.202403651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
We report a user-friendly approach for the decarboxylative formation of stereodefined and complex tri- and tetra-substituted olefins from vinyl cyclic carbonates and amines as radical precursors. The protocol relies on easy photo-initiated α-amino-radical formation followed by addition onto the double bond of the substrate resulting in a sequence involving carbonate ring-opening, double bond relay, CO2 extrusion and finally O-protonation. The developed protocol is efficient for both mismatched and matched polarity substrate combinations, and the scope of elaborate stereodefined olefins that can be forged including drug-functionalized derivatives is wide, diverse and further extendable to other types of heterocyclic and radical precursors. Mechanistic control reactions show that the decarboxylation step is a key driving force towards product formation, with the initial radical addition under steric control.
Collapse
Affiliation(s)
- Qian Zeng
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
- Departament de Química Física i Inorgànica/Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Yamini Nirwan
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís, Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
2
|
Li X, Xu Z. Skeletal Editing: Ring Insertion for Direct Access to Heterocycles. Molecules 2024; 29:1920. [PMID: 38731412 PMCID: PMC11085720 DOI: 10.3390/molecules29091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Skeleton editing has rapidly advanced as a synthetic methodology in recent years, significantly streamlining the synthesis process and gaining widespread acceptance in drug synthesis and development. This field encompasses diverse ring reactions, many of which exhibit immense potential in skeleton editing, facilitating the generation of novel ring skeletons. Notably, reactions that involve the cleavage of two distinct rings followed by the reformation of new rings through ring insertion play a pivotal role in the construction of novel ring skeletons. This article aims to compile and systematize this category of reactions, emphasizing the two primary reaction types and offering a thorough exploration of their associated complexities and challenges. Our endeavor is to furnish readers with comprehensive reaction strategies, igniting research interest and injecting fresh impetus into the advancement of this domain.
Collapse
Affiliation(s)
| | - Zhigang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| |
Collapse
|
3
|
Shi W, Qiao C, Benet-Buchholz J, Kleij AW. Catalytic Domino Three-Component Synthesis of Functionalized Heterocycles from Carbon Dioxide. CHEMSUSCHEM 2024; 17:e202301626. [PMID: 38109072 DOI: 10.1002/cssc.202301626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Indexed: 12/19/2023]
Abstract
A catalytic domino, three-component reaction has been developed for the transformation of carbon dioxide into functionalized six-membered cyclic carbonates. The catalytic process combines an initial carboxylative cyclization of β-epoxy alcohols followed by an oxa-Michael reaction affording an unparalleled scope of heterocyclic structures. The wide range of functional groups, including free-alcohols, empowers the access to a range of products including C11-oxo-based bicyclic heterocycles. The versatility of these functionalized carbonates is further complemented by a series of synthetic diversifications. Control experiments are consistent with the first step of this domino process being promoted by a binary Lewis acid/base catalyst, while the second stage only requires catalytic base.
Collapse
Affiliation(s)
- Wangyu Shi
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Chang Qiao
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
4
|
Wu SY, Li Y, Shen P, Yang XH, Ran GY. Palladium-catalysed fragmentary esterification-induced allylic alkylation of allyl carbonates and cyclic vinylogous anhydrides. Chem Commun (Camb) 2024; 60:1416-1419. [PMID: 38204402 DOI: 10.1039/d3cc05758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
An unprecedented palladium-catalysed fragmentary esterification-induced allylic alkylation (FEAA) of cyclic vinylogous anhydrides (CVAs) and allyl carbonates has been disclosed. The protocol features broad sp3-rich scaffold tolerance, rendering highly functionalized 1,6 and 1,7-dicarbonyls in up to high yields and diastereoselectivities. Three-component FEAA is also well tolerant to generate 1,6-dicarbonyls through the addition of extra O/N-nucleophiles. Furthermore, cyclic allyl carbonate-involved FEAA provides an efficient approach for the synthesis of structurally complex medium-sized rings.
Collapse
Affiliation(s)
- Shu-Yi Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yang Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Shen
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Xin-Han Yang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Han Z, Xue Y, Li X, Hu X, Dong XQ, Sun J, Huang H. Studies on the [4 + 2] cycloaddition and allylic substitution of indole-fused zwitterionic π-allylpalladium. Org Biomol Chem 2023; 21:8162-8169. [PMID: 37782136 DOI: 10.1039/d3ob01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The zwitterionic π-allylpalladium species, also known as dipoles, are important synthons widely used in various reactions including cycloaddition and allylic substitution. This study reported the development of a new indole-fused zwitterionic π-allylpalladium precursor compound and its application in [4 + 2] cycloaddition and allylic substitution reactions. As a result, the synthesis of pyrrolo[3,2,1-ij]quinazolin-3-one and 7-vinyl indole compounds was achieved with moderate to good yields. Notably, the allylic substitution reaction exhibited excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Xue
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xinzhe Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
6
|
Du J, Li YF, Ding CH. Recent advances of Pd-p-allyl zwitterions in cycloaddition reactions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Qin X, Zou N, Nong C, Mo D. Recent Advances on the Synthesis of Nine-Membered N-Heterocycles. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Williams M, Boyer A. Modular Synthesis of Highly Substituted 3-Azapyrroles by Rh(II)-Catalyzed N-H Bond Insertion and Cyclodehydration. J Org Chem 2022; 87:16139-16156. [PMID: 35503987 PMCID: PMC9764362 DOI: 10.1021/acs.joc.2c00434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A modular synthesis of highly substituted 3-azapyrroles has been developed using a three-step sequence comprising copper-catalyzed alkyne-azide cycloaddition (CuAAC), N-H bond insertion, and cyclodehydration. 1-Sulfonyl-1,2,3-triazoles (1-STs) can be accessed from common alkyne and sulfonyl azide building blocks by CuAAC using CuTC. Rhodium(II)-acetate-promoted 1-ST denitrogenation results in highly electrophilic rhodium azavinyl carbenes that, here, underwent insertion into the N-H bond of secondary α-aminoketones to form 1,2-aminoalkenes. These products were cyclized and dehydrated using BF3·OEt2 into highly substituted 3-azapyrroles. The three steps (CuAAC, N-H bond insertion, and cyclodehydration) could be telescoped into a one-pot process. The method proved to be highly efficient and tolerated a wide range of substituents.
Collapse
|
9
|
Huang LZ, Xuan Z, Park JU, Kim JH. Dual Rh(II)/Pd(0) Relay Catalysis Involving Sigmatropic Rearrangement Using N-Sulfonyl Triazoles and 2-Hydroxymethylallyl Carbonates. Org Lett 2022; 24:6951-6956. [PMID: 36121333 DOI: 10.1021/acs.orglett.2c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dual Rh(II)/Pd(0) relay catalysis of N-sulfonyl triazoles and 2-hydroxymethylallyl carbonates has been developed, which affords N-sulfonyl pyrrolidines in moderate to good yields with high diastereoselectivities. The reaction proceeds via a relay mechanism involving O-H insertion onto the α-imino Rh(II)-carbene, [3,3]-sigmatropic rearrangement, dipole formation through Pd(0)-catalyzed decarboxylation, and intramolecular N-allylation, leading to the formation of multiple bonds in a one-pot operation.
Collapse
Affiliation(s)
- Liang-Zhu Huang
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea.,College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Zi Xuan
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Jong-Un Park
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| |
Collapse
|
10
|
Abstract
One-pot synthesis is an active topic in organic chemistry due to its intrinsic advantages of simple operation, high mass efficiency, low cost, and less amount of waste disposal. Among three kinds of one-pot syntheses, 1) cascade reactions, 2) multicomponent reactions (MCRs), and 3) one-pot stepwise synthesis (OPSS), OPSS could be more flexible and practical since it is carried out stepwisely and have variable reaction conditions for different steps. This perspective article uses selected examples to highlight the recent development in OPSS involving cyclization, cycloaddition, rearrangement, and catalytic reactions for the synthesis of heterocyclic scaffolds, asymmetric molecules, natural products, and bioactive compounds.
Collapse
|
11
|
Begum AF, Balasubramanian KK, Bhagavathy S. 3‐Arylidene‐4‐Chromanones and 3‐arylidene‐4‐thiochromanones: Versatile Synthons towards the Synthesis of Complex Heterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayisha F Begum
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry 600048 Chennai INDIA
| | | | - Shanmugasundaram Bhagavathy
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry Seethakathi EstateVandalur 600048 Chennai INDIA
| |
Collapse
|
12
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
13
|
Li K, Yang S, Zheng B, Wang W, Wu Y, Li J, Guo H. A new type of δ-vinylvalerolactone for palladium-catalyzed cycloaddition: synthesis of nine-membered heterocycles. Chem Commun (Camb) 2022; 58:6646-6649. [PMID: 35593191 DOI: 10.1039/d2cc01134d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, a new type of δ-vinylvalerolactone was designed and synthesized, and used as a new precursor in Pd-catalyzed [6+3] cycloaddition with azomethine imines, leading to nine-membered 1,2-dinitrogen-containing heterocycles in 77-98% yields with >20 : 1 d.r. These nine-membered ring-fused products were further transformed into unusual tetracyclic bridged-ring compounds without loss of the diastereoselectivities.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Sen Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Bing Zheng
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Mao B, Xu J, Shi W, Wang W, Wu Y, Xiao Y, Guo H. Pd-Catalyzed [4 + 2] cycloaddition of methylene cyclic carbamates with dihydropyrazolone-derived alkenes: synthesis of spiropyrazolones. Org Biomol Chem 2022; 20:4086-4090. [PMID: 35545885 DOI: 10.1039/d2ob00535b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a palladium-catalyzed [4 + 2] cycloaddition of 5-methylene-1,3-oxazinan-2-ones with 4-arylidene-2,4-dihydro-3H-pyrazol-3-ones has been developed to produce spiropyrazolones in high yields with excellent diastereoselectivities in nearly all cases. The cycloaddition reaction was scaled-up without significant loss of yield, and its synthetic utility has been demonstrated by further transformations of the products. The reaction type of N-Ts cyclic carbamates under palladium catalysis was extended to include [4 + 2] cycloaddition for the first time.
Collapse
Affiliation(s)
- Biming Mao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China. .,Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Jiaqing Xu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
15
|
Voloshkin VA, Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP. Annulation-Triggered Denitrogenative Transformations of 2-(5-Iodo-1,2,3-triazolyl)benzoic Acids. J Org Chem 2022; 87:7064-7075. [PMID: 35583492 DOI: 10.1021/acs.joc.2c00235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of [1,2,3]triazolobenzoxazinones to act as a source of "hidden" diazo group was discovered. These diazo precursors can be easily prepared by the intramolecular cyclization of 2-(5-iodo-1,2,3-triazolyl)benzoic acids. The Cu-catalyzed capture of the hidden diazo group allows for further functionalization through the denitrogenative pathway. The transformations proceed via the formation of either diazoimine or diazoamide intermediates. Novel routes to various anthranilamides as well as thiolated benzoxazinones were developed using the one-pot cyclization/diazo capture procedure.
Collapse
Affiliation(s)
- Vladislav A Voloshkin
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| |
Collapse
|
16
|
Zhang MM, Qu BL, Shi B, Xiao WJ, Lu LQ. High-order dipolar annulations with metal-containing reactive dipoles. Chem Soc Rev 2022; 51:4146-4174. [PMID: 35521739 DOI: 10.1039/d1cs00897h] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Medium-sized heterocycles are widespread among a spectrum of structurally intriguing and biologically significant natural products and synthetic pharmaceuticals. Metal-catalyzed high-order dipolar annulations resembling reactions of metal-containing reactive dipoles with dipolarophiles constitute a highly efficient and flexible strategy for constructing medium-sized heterocycles. Mechanistically, these annulation reactions usually proceeding through stepwise pathways are different from the classic high-order pericyclic reactions that follow the Woodward-Hoffman rules. More significantly, asymmetric high-order dipolar annulations using chiral organometallic catalysts have been proven successful for constructing chiral medium-sized heterocycles with high enantio- and diastereoselectivity. This review highlights the impressive advances in this area and is focused on the reactivity, scope, mechanisms and applications of high-order dipolar annulation reactions.
Collapse
Affiliation(s)
- Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bao-Le Qu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bin Shi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Reyes E, Prieto L, Carrillo L, Uria U, Vicario J. Recent Developments in Transannular Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1843-1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transannular reactions have shown a remarkable performance for the construction of polycyclic scaffolds from medium- or large sized cyclic molecules in an unconventional manner. Recent examples of transannular reactions reported from 2011 have been reviewed, emphasizing the excellent performance of this approach when accessing the target compounds. This review also highlights how this methodology provides an alternative approach to other commonly used methodologies for the construction of cyclic entities such as cyclization or cycloaddition reactions
Collapse
|
18
|
Guo W, Yan B. Recent Advances in Decarboxylative Conversions of Cyclic Carbonates and Beyond. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1715-7413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractIn recent years, functionalized cyclic organic carbonates have emerged as valuable building blocks for the construction of interesting and useful molecules upon decarboxylation under transition-metal catalysis. By employing suitable catalytic systems, the development of chemo-, regio-, stereo- and enantioselective methods for the synthesis of useful and interesting compounds has advanced greatly. On the basis of previous research on this topic, this short review highlights the synthetic potential of cyclic carbonates under transition-metal catalysis over the last two years.1 Introduction2 Transition-Metal-Catalyzed Decarboxylation of Vinyl Cyclic Carbonates3 Zwitterionic Enolate Chemistry Based On Transition-Metal Catalysis4 Decarboxylation of Alkynyl Cyclic Carbonates and Dioxazolones5 Conclusions and Perspectives
Collapse
|
19
|
Bain AI, Chinthapally K, Hunter AC, Sharma I. Dual Catalysis in Rhodium (II) Carbenoid Chemistry. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anae I Bain
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Kiran Chinthapally
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Arianne C. Hunter
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Indrajeet Sharma
- University of Oklahoma Chemistry and Biochemistry Stephenson Life Sciences Research Center101 Stephenson Parkway 73019-5251 Norman UNITED STATES
| |
Collapse
|
20
|
Liu Y, Chen Y, Yihuo A, Zhou Y, Liu X, Lin L, Feng X. Diastereodivergent Synthesis of Chiral α-Aminoketones via a Catalytic O–H Insertion/Barnes–Claisen Rearrangement Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yun Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yushuang Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Aying Yihuo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
21
|
Xie H, Yang Z, Tang L, Han Z, Sun J, Huang H. Construction of nine-membered N,N,O-heterocycles via Pd-catalyzed [6+3] dipolar cycloaddition. Chem Commun (Camb) 2022; 58:10560-10563. [DOI: 10.1039/d2cc03666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new approach for the synthesis of 9-membered N,N,O-heterocycles by Pd-catalyzed [6+3] dipolar cycloaddition of N-iminoisoquinolinium ylides and 2-vinyl oxetanes has been developed.
Collapse
Affiliation(s)
- Hongling Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhenkun Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Luning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
22
|
Ji J, Guan C, Wei Q, Chen X, Zhao Y, Liu S. Base-Induced Highly Regioselective Synthesis of N2-Substituted 1,2,3-Triazoles under Mild Conditions in Air. Org Lett 2021; 24:132-136. [PMID: 34928620 DOI: 10.1021/acs.orglett.1c03743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a highly regioselective base-induced synthesis of N2-substituted 1,2,3-triazoles from N-sulfonyl-1,2,3-triazoles and alkyl bromides/alkyl iodides at room temperature. We propose an SN2-like mechanistic pathway to explain the high N2-regioselectivity. The protocol features a broad substrate scope and generates products in good to excellent yields (72-90%).
Collapse
Affiliation(s)
- Jian Ji
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cong Guan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qinghua Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xuwen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
23
|
Qin X, Zou N, Cheng X, Liang C, Mo D. Synthesis of Chiral Nine‐Membered N‐Heterocycles through Silver(I)‐Promoted Cycloaddition and Rearrangement from
N
‐Vinyl‐α,β‐Unsaturated Nitrones with Chiral 3‐Propioloyloxazolidin‐2‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Ting Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Ning Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Xiao‐Ling Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Dong‐Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| |
Collapse
|
24
|
Wang J, Yu J, Chen J, Jiang Y, Xiao T. Doyle-Kirmse reaction using 3,3-difluoroallyl sulfide and N-sulfonyl-1,2,3-triazole: an efficient access to gem-difluoroallylated multifunctional quaternary carbon. Org Biomol Chem 2021; 19:6974-6978. [PMID: 34338276 DOI: 10.1039/d1ob01129d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Doyle-Kirmse reaction of N-sulfonyl-1,2,3-triazole with 3,3-difluoroallyl sulfide through a Rh(ii)-catalyzed [2,3]-sigmatropic rearrangement has been developed, which provides an efficient access to multifunctional quaternary centers containing aryl, imino, thio, and brominated gem-difluoroallyl groups. The reaction features broad substrate scope with moderate to excellent yields. The applicability of the method is confirmed by gram-scale synthesis and further transformations.
Collapse
Affiliation(s)
- Jiazhuang Wang
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. of China.
| | | | | | | | | |
Collapse
|