1
|
Tang F, Zhang ZC, Song ZL, Li YH, Zhou ZH, Chen JJ, Yang Z. Asymmetric Total Synthesis of Janthinoid A. J Am Chem Soc 2025; 147:4731-4735. [PMID: 39899796 DOI: 10.1021/jacs.4c17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The asymmetric total synthesis of janthinoid A has been accomplished for the first time in 14 steps without using a protecting group. The trans-decalin subunit and the rigid oxabicyclo[3.2.1]octane motif were constructed via an epoxide-initiated cationic π-cyclization reaction and a Fe(ClO4)3-mediated oxidative cascade cyclization reaction, respectively.
Collapse
Affiliation(s)
- Fu Tang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhong-Chao Zhang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhi-Lin Song
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yuan-He Li
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zi-Hao Zhou
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jia-Jun Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
2
|
Li XY, Zhang LJ, Yang YY, Lu WJ, Ye ST, Zhang H, Kong LY, Xu WJ. Isolation and Biomimetic Semisynthesis of Hyperzrones A and B, Two Nor-Polycyclic Polyprenylated Acylphloroglucinols with a Characteristic Cyclobutane Moiety, from Hypericum beanii. Org Lett 2024; 26:10964-10969. [PMID: 39651766 DOI: 10.1021/acs.orglett.4c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hyperzrones A (1) and B (2), two unprecedented nor-polycyclic polyprenylated acylphloroglucinols with a characteristic cyclobutane moiety, were discovered from Hypericum beanii. Their structures were determined by extensive spectroscopic analysis, X-ray crystallography, and quantum chemical calculation methods. A bioinspired semisynthesis of 1 and 2 was achieved from the natural precursor hypercalin B (3), featuring a Favorskii-type rearrangement and a visible-light-mediated [2 + 2] photocycloaddition. Several diverse derivatives were also obtained, providing a compound library for biological studies.
Collapse
Affiliation(s)
- Xue-Yan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lv-Jun Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yue-You Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei-Jia Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Sheng-Tao Ye
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
3
|
Lefevre A, Guillot R, Kouklovsky C, Vincent G. Ferrocene-Mediated Electrochemical Polycyclization of Malonates. Org Lett 2024; 26:7403-7407. [PMID: 39189952 DOI: 10.1021/acs.orglett.4c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report access to the core of biologically relevant aromatic abietane diterpenoids and to the formal synthesis of podocarpic and lambertic acids or γ-lactones via an electrochemical bicyclization process initiated by the ferrocene-mediated anodic oxidation of a malonate via single electron-transfer. This approach permits escaping the use of excess of oxidants such as Mn(OAc)3 and the associated complicated purification.
Collapse
Affiliation(s)
- Antoine Lefevre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
4
|
Su Z, Wang S. Multicomponent Synthesis of 3(2H)-Furanones Initiated by Copper(II)-Catalyzed Alkyne-Carbonyl Cross Metathesis. Chemistry 2024; 30:e202401999. [PMID: 38895743 DOI: 10.1002/chem.202401999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
The cooperative Lewis and Brønsted acid catalysis makes convergent synthesis of 3(2H)-furanones through a three-component coupling of 1,3-diynes, alkyl glyoxylates and water. Control experiments support that Lewis acid-catalyzed highly chemo-, regio- and stereoselective alkyne-carbonyl metathesis of 1,3-diynes and alkyl glyoxylates might be the initial step of this multicomponent annulation. Further chemo- and regioselective hydration of the alkyne-carbonyl metathesis product and subsequent oxa-Michael addition promoted by Brønsted acid results in the formation of two C-O bonds of the five-membered oxygen heterocycle.
Collapse
Affiliation(s)
- Zhenjie Su
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Benford‐Ward J, Ahmadipour S, Sembayeva A, Male L, Grainger RS. Studies towards the Synthesis of (+)-Dictyoxetane. Chemistry 2022; 28:e202202429. [PMID: 36300909 PMCID: PMC10092742 DOI: 10.1002/chem.202202429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/06/2022]
Abstract
The dolabellane-type diterpene dictyoxetane represents a significant challenge to synthetic organic chemistry. Methodology directed towards the total synthesis of naturally occurring (+)-dictyoxetane is reported. Catalytic asymmetric synthesis of the trans-hydrindane ring system is achieved through chemoselective deoxygenation of the Hajos-Parrish ketone. An alternative to the Garst-Spencer furan annulation is developed for the synthesis of a 2,5-dimethyl, tetrasubstituted furan, employing a tandem 5-exo-dig alcohol to alkyne cyclisation/aromatisation reaction as a key step. The (4+3) cycloaddition reaction of an oxyallyl cation with a tetrasubstituted furan is established on a cyclohexanone-derived model system, and a range of related (4+3) cycloadditions investigated on a homochiral, trans-hydrindane-fused furan, where regio- and diastereoselectivity is required for the natural product synthesis. In an alternative (4+2) Diels-Alder approach, a C2 -symmetric vinyl sulfoxide-based chiral ketene equivalent is used to prepare oxanorbornenes with the same oxygen bridge stereochemistry found in the 2,7-dioxatricyclo[4.2.1.03,8 ]nonane ring system of the natural product.
Collapse
Affiliation(s)
| | - Sanaz Ahmadipour
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Aliya Sembayeva
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Louise Male
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|
6
|
Volkov PA, Khrapova KO, Bidusenko IA, Telezhkin AA, Schmidt EY, Albanov AI, Trofimov BA. Chemoselective cross-coupling of terminal propargylamines with (het)aroyl chlorides: synthesis of β-aminoacetylenic ketones bearing aromatic and heteroaromatic substituents. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Wang LL, Yu Q, Zhang W, Yang S, Peng L, Zhang L, Li XN, Gagosz F, Kirschning A. Asymmetric Total Synthesis of Antibiotic Elansolid A. J Am Chem Soc 2022; 144:6871-6881. [PMID: 35410472 DOI: 10.1021/jacs.2c01133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elansolid A is a structurally complex polyketide macrolactone natural product that exhibits promising antibacterial properties. Its challenging asymmetric total synthesis was achieved by a convergent strategy, in which the tetrahydroindane core of the molecule and an eastern vinyl iodide moiety were combined as the main fragments. The central tetrahydroindane motif was constructed with high stereoselectivity by a bioinspired intramolecular Diels-Alder cycloaddition, generating four stereogenic centers in a single step. The stereocontrol of this key step could be achieved by virtue of a 1,3-allylic strain generated by the temporary introduction of a steric-directing iodine substituent on the substrate. The formation of the macrolactone motif that completes the synthesis was achieved via two different retrosynthetic disconnections, namely, a Suzuki-Miyaura cross-coupling or an alternative Mukaiyama esterification reaction.
Collapse
Affiliation(s)
- Liang-Liang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Qi Yu
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Shuai Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Lin Peng
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, PR China
| | - Liang Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
8
|
Oriyama T, Han W, Liu F. MS 4A-Promoted Aqueous Phospho-Aldol-Brook Rearrangement Reaction of Isatins. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Jin M, Tang C, Li Y, Yang S, Yang YT, Peng L, Li XN, Zhang W, Zuo Z, Gagosz F, Wang LL. Enantioselective access to tricyclic tetrahydropyran derivatives by a remote hydrogen bonding mediated intramolecular IEDHDA reaction. Nat Commun 2021; 12:7188. [PMID: 34893616 PMCID: PMC8664811 DOI: 10.1038/s41467-021-27521-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022] Open
Abstract
Inverse-electron-demand-hetero-Diels-Alder reactions of alkenes with α,β-unsaturated keto compounds allow rapid access to the tetrahydropyran ring found in numerous natural products and bioactive molecules. Despite its synthetic interest, catalytic asymmetric versions of this process remain underdeveloped, especially regarding the use of non-activated alkenes reacting with α,β-unsaturated ketone or aldehyde, for which no report can be found in the literature. Herein, we describe the catalytic inverse-electron-demand-hetero-Diels-Alder reactions between neutral alkenes and an α,β-unsaturated ketones or aldehydes to produce a variety of trans-fused [5,6,8] tricyclic structures containing a central, chiral tetrahydropyran ring. This complex transformation, which is achieved using a chiral phosphoric acid, allows for the formation of four stereogenic centers in a single step with high regio-, diastereo- and enantioselectivity (up to 99% ee). Such level of stereocontrol could be achieved by a key remote double hydrogen atom bonding interaction between the linear substrate and the catalyst. Although the hetero-Diels–Alder reaction is a staple of organic chemistry, catalytic asymmetric versions of the inverse-electron demand variant often require specially engineered substrates for the reaction to work. Here the authors cyclize non-activated alkenes with α,β-unsaturated ketones or aldehydes to form chiral fused heterocycles using a chiral phosphoric acid catalyst.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China
| | - Congyun Tang
- School of Food and Chemical Engineering, Shaoyang University, 422000, Shaoyang, PR China
| | - Yingying Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, 643000, Zigong, PR China
| | - Shuai Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China
| | - Ying-Tao Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China
| | - Lin Peng
- School of Food and Chemical Engineering, Shaoyang University, 422000, Shaoyang, PR China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 450001, Zhengzhou, Henan Province, PR China.
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China.
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Liang-Liang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China.
| |
Collapse
|