1
|
Doraghi F, Edareh MH, Ghanbarlou M, Larijani B, Mahdavi M. Unconventional approaches for synthesis of 2-substituted benzothiazoles. Org Biomol Chem 2025. [PMID: 40304689 DOI: 10.1039/d5ob00339c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Benzothiazoles are among the most important heterocycles in pharmaceuticals, natural products, and functional materials. Hence, developing direct and sustainable routes by replacing hazardous/toxic thiol reagents with nontoxic reagents for constructing 2-substituted benzothiazoles is of utmost importance. In this review, we have highlighted many synthetic methods for the synthesis of 2-substituted benzothiazoles from different starting materials under transition metal catalysis or metal-free systems.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Mehdi Ghanbarlou
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang QD, Chen X, Wu YS, Miao C, Yang JM, Shen ZL. Palladium-Catalyzed α-Arylation of Sulfoxonium Ylides with Aryl Thianthrenium Salts via C-S and C-H Bond Activation. Chem Asian J 2025:e202401873. [PMID: 40016172 DOI: 10.1002/asia.202401873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Diverse α-aryl α-carbonyl sulfoxonium ylides were efficiently synthesized in yields ranging from moderate to high via a palladium-catalyzed α-arylation of sulfoxonium ylides with aryl thianthrenium salts. The reactions proceeded smoothly via C-S and C-H bond functionalization, exhibiting broad substrate scope and good compatibility to various functionalities. In addition, the scale-up synthesis could be achieved, and the one-pot protocol commencing from the use of simple arene as the precursor of aryl thianthrenium salt could also be accomplished.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Xue Chen
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuan-Shuai Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, China
| | - Zhi-Liang Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
Wang X, Guo C, Wei M, Ding Q, Wu J. A Three-Component Reaction of Alkenyl Thianthrenium Salts, Cyclopropanols and Sulfur Dioxide. J Org Chem 2025; 90:908-912. [PMID: 39791135 DOI: 10.1021/acs.joc.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A three-component reaction of alkenyl thianthrenium salts, cyclopropan-1-ols and DABCO·(SO2)2 under catalyst- and additive-free conditions, is accomplished. This sulfonylation with the insertion of sulfur dioxide works efficiently under very mild conditions, leading to a wide range of 1-substituted vinyl sulfones in moderate to good yields. In this protocol, the scope generality of alkenyl thianthrenium salts and cyclopropyl alcohols is demonstrated.
Collapse
Affiliation(s)
- Xinhua Wang
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Chen Guo
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Minsi Wei
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
| | - Qiuping Ding
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
4
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Liu W, Jing H, Hou H, Xu Y, Qiu C, Ling X. Cu 2O@PdCu synergistic catalysis for highly effective C-H arylation of azoles. Chem Commun (Camb) 2024; 60:13931-13934. [PMID: 39508308 DOI: 10.1039/d4cc04779f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An efficient heterogeneous Pd/Cu synergistic catalysis system without a ligand was utilized for C-H arylation of azoles. The reaction exhibits excellent catalytic activity with high functional group tolerance. The synergistic effect between the Cu2O core and PdCu shell was confirmed, whereas pure PdCu nanocages and Cu2O exhibited negligible catalytic activity.
Collapse
Affiliation(s)
- Wei Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China.
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Haochuan Jing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hao Hou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Yangsen Xu
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, P. R. China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xiang Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
6
|
Hu XB, Chen Y, Zhu CL, Xu H, Zhou X, Rao W, Hang XC, Chu XQ, Shen ZL. Cross-Electrophile Couplings of Benzyl Sulfonium Salts with Thiosulfonates via C-S Bond Activation. J Org Chem 2024; 89:13601-13607. [PMID: 39228065 DOI: 10.1021/acs.joc.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A zinc-mediated cross-electrophile coupling of benzyl sulfonium salts with thiosulfonates via C-S bond cleavage was achieved. The reductive thiolation proceeded well under transition metal-free conditions to afford the desired benzyl sulfides in good yields, exhibiting both broad substrate scope and good functionality tolerance. In addition, the reaction could be applied to the use of selenosulfonate as an effective selenylation agent and be subjected to scale-up synthesis.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Yuwei Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Chen-Long Zhu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Chun Hang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Cao ZW, Zhang JX, Wang JT, Li L, Chen XY, Jin S, Cao ZY, Wang P. Palladium-Catalyzed Hiyama-Type Coupling of Thianthrenium and Phenoxathiinium Salts. Org Lett 2024; 26:6681-6686. [PMID: 39058573 DOI: 10.1021/acs.orglett.4c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Here, we demonstrate palladium-catalyzed Hiyama-type cross-coupling reactions of aryl thianthrenium or phenoxathiinium salts. By employing stable and inexpensive organosilanes, the arylation, alkenylation, and alkynylation were realized in high efficiency using commercially available Pd(tBu3P)2 as the catalyst, thus providing a reliable method for preparation of biaryls, styrenes, and aryl acetylenes with a broad functional group tolerance under mild conditions. Given the accessibility of aryl thianthrenium or phenoxathiinium salts from simple arenes in a remarkable regioselective fashion, this protocol also provides an attractive approach for the late-stage modification of complex bioactive scaffolds.
Collapse
Affiliation(s)
- Zhi-Wei Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Ji-Xuan Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Jin-Tao Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Lang Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Xiao-Yue Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Shengnan Jin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
8
|
Guo C, Wang X, Ding Q, Wu J. C-H Bond Sulfonylation from Thianthrenium Salts and DABCO·(SO 2) 2: Synthesis of 2-Sulfonylindoles. J Org Chem 2024; 89:9672-9680. [PMID: 38871666 DOI: 10.1021/acs.joc.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A three-component reaction of 1-(1H-indol-1-yl)isoquinolines or 1-(pyridin-2-yl)-1H-indoles, DABCO·(SO2)2, and thianthrenium salts under synergistic photoredox and palladium catalysis is accomplished. This direct C-H bond sulfonylation of indoles with the insertion of sulfur dioxide under mild conditions works efficiently, giving rise to a wide range of 2-sulfonated indoles in moderate to good yields under mild conditions. In this protocol, the generality of aryl/alkyl thianthrenium salts is demonstrated as well. A photoredox radical process combined with palladium catalysis is proposed.
Collapse
Affiliation(s)
- Chen Guo
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xinhua Wang
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Qiuping Ding
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Simon H, Zangarelli A, Bauch T, Ackermann L. Ruthenium(II)-Catalyzed Late-Stage Incorporation of N-Aryl Triazoles and Tetrazoles with Sulfonium Salts via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202402060. [PMID: 38618872 DOI: 10.1002/anie.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
The late-stage functionalization of active pharmaceutical ingredients is a key challenge in medicinal chemistry. Furthermore, N-aryl triazoles and tetrazoles are important structural motifs with the potential to boost the activity of diverse drug molecules. Using easily accessible dibenzothiophenium salts for the ruthenium-catalyzed C-H arylation, these scaffolds were introduced into a variety of bioactive compounds. Our methodology uses cost-efficient ruthenium, KOAc as a mild base and gives access to a plethora of highly decorated triazole and tetrazole containing drug derivatives.
Collapse
Affiliation(s)
- Hendrik Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Tristan Bauch
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
10
|
Nan J, Lei M, Chen G, Ma Y, Liang C, Wang J. Palladium/norbornene-catalyzed diversified trifunctionalization of aryl-thianthreniums. Chem Commun (Camb) 2024; 60:5558-5561. [PMID: 38712611 DOI: 10.1039/d4cc01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A novel Catellani-type conversion is reported using aryl-thianthreniums (aryl-TTs) instead of aryl halides. Three classes of ortho-dual C-H functionalization involving alkylation, amination, and deuterated methylation and five types of ipso-operation including alkenylation, cyanation, methylation, hydrogenation, and alkynylation all proceed well in this procedure. In this conversion, aryl-TTs exhibit satisfactory reactivity and feature the advantage that the leaving TT unit can be recovered. More strikingly, this finding represents a new chemistry conversion of aryl-TTs, wherein contiguous tri-functionalization in a single chemical manipulation is realized.
Collapse
Affiliation(s)
- Jiang Nan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Min Lei
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Gaoyang Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chengyuan Liang
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
11
|
Ye X, Pan H, Huang Y, Chen J, Wang Z. Photochemical three-component assembly of tri-substituted oxazoles through a carbenic phosphorus-nitrile hybrid ylide formation/trapping cascade. Chem Sci 2024; 15:6515-6521. [PMID: 38699275 PMCID: PMC11062088 DOI: 10.1039/d4sc01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 05/05/2024] Open
Abstract
Construction of complex molecular skeletons with ubiquitous chemical feedstocks in a single transformation is highly appealing in organic synthesis. We report a novel visible-light-induced three-component reaction for the construction of complex 2,4,5-trisubstituted oxazoles, which are valuable in medicinal chemistry, from simple and readily available iodonium-phosphonium hybrid ylides, carboxylic acids, and nitriles. This reaction features a carbenic phosphorus-nitrile hybrid ylide formation/trapping cascade, in which a photo-generated α-phosphonium carbene acts as a sequence trigger. This catalyst- and additive-free transformation exhibits high efficiency and broad substrate scope for synthesizing diverse oxazoles.
Collapse
Affiliation(s)
- Xingchen Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Huaijin Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR P. R. China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Zhaofeng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
12
|
Zhang Z, Chen X, Niu ZJ, Li ZM, Li Q, Shi WY, Ding T, Liu XY, Liang YM. A Practical and Regioselective Strategy for Aromatic C-H Difunctionalization via Site-Selective C-H Thianthrenation. Org Lett 2024; 26:1813-1818. [PMID: 38386925 DOI: 10.1021/acs.orglett.3c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Herein, we present a novel Catellani-type reaction that employed aryl-thianthrenium salts as aryl substrates to trigger the subsequent palladium/norbornene cooperatively catalyzed progress. This strategy can achieve site-selective C-H difunctionalization of aryl compounds without directing groups or a known initiating reagent. A series of functionalized syntheses of bioactive molecules further demonstrated the potential of this strategy.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhuo-Mei Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiao Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Tian Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Wang Z, Shao Z, Wang C, Wen J. Base-Promoted Ring-Opening Hydroxylation of Cyclic Sulfonium Salts. J Org Chem 2024; 89:3084-3091. [PMID: 38335534 DOI: 10.1021/acs.joc.3c02546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Herein, we reported a general strategy for the synthesis of sulfur-containing primary alcohol derivatives by base-promoted ring-opening hydroxylation of cyclic sulfonium salts. A variety of sulfonium salts were successfully transformed into the desired hydroxylated products in moderate to excellent yields with good functional group tolerance. Moreover, the one-pot synthesis, scale-up reaction, and late-stage functionalization of complex molecules demonstrated the practicability of this synthetic protocol in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zeyu Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Cheng Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
14
|
Hu XB, Fu QQ, Huang XY, Chu XQ, Shen ZL, Miao C, Chen W. Hydroxylation of Aryl Sulfonium Salts for Phenol Synthesis under Mild Reaction Conditions. Molecules 2024; 29:831. [PMID: 38398583 PMCID: PMC10891898 DOI: 10.3390/molecules29040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Hydroxylation of aryl sulfonium salts could be realized by utilizing acetohydroxamic acid and oxime as hydroxylative agents in the presence of cesium carbonate as a base, leading to a variety of structurally diverse hydroxylated arenes in 47-95% yields. In addition, the reaction exhibited broad functionality tolerance, and a range of important functional groups (e.g., cyano, nitro, sulfonyl, formyl, keto, and ester) could be well amenable to the mild reaction conditions.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Qian-Qian Fu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Ying Huang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weiyi Chen
- Soochow College, Soochow University, Suzhou 215006, China
| |
Collapse
|
15
|
Fan X, Zhang D, Xiu X, Xu B, Yuan Y, Chen F, Gao P. Nucleophilic functionalization of thianthrenium salts under basic conditions. Beilstein J Org Chem 2024; 20:257-263. [PMID: 38352071 PMCID: PMC10862136 DOI: 10.3762/bjoc.20.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, S-(alkyl)thianthrenium salts have become an important means of functionalizing alcohol compounds. However, additional transition metal catalysts and/or visible light are required. Herein, a direct thioetherification/amination reaction of thianthrenium salts is realized under metal-free conditions. This strategy exhibits good functional-group tolerance, operational simplicity, and an extensive range of compatible substrates.
Collapse
Affiliation(s)
- Xinting Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Xiangchuan Xiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Bin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
16
|
Qi W, Gu S, Xie LG. Reductive Radical-Polar Crossover Enabled Carboxylative Alkylation of Aryl Thianthrenium Salts with CO 2 and Styrenes. Org Lett 2024; 26:728-733. [PMID: 38214477 DOI: 10.1021/acs.orglett.3c04183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Carboxylic functionalities are among the pivotal groups in bioactive molecules and in the synthesis of new lead compounds because of their unique character in the formation of hydrogen bonds and the possibility of constructing molecular complexes via amide couplings. We adopt the reductive radical-polar crossover strategy to introduce carboxyalkyl groups into arenes with styrenes and CO2 via thianthrenium salts. This protocol exhibits excellent potential as a straightforward and modular platform for site-selective carboxylative derivation of bioactive molecules.
Collapse
Affiliation(s)
- Weiguan Qi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
17
|
Zhang J, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of Diaryl Ketones from Arenes and Arylboronic Acids through C(sp 2)-H Thianthrenation. Org Lett 2023; 25:2162-2166. [PMID: 36943726 DOI: 10.1021/acs.orglett.3c00792] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The development of mild methodology for converting inert C-H bonds to value-added molecules has been an attractive research topic during the last few decades as it offers efficient preparation. Meanwhile, diaryl ketones hold potent applications in antitumor drugs, the agrochemical industry, and synthetic chemistry. Herein, we report versatile palladium-catalyzed carbonylative cross-coupling reactions of aryl thianthrenium salts with arylboronic acids. Arenes were transformed site selectively via C(sp2)-H thianthrenation, and various desired diaryl ketones were produced in good to excellent yields.
Collapse
Affiliation(s)
- Jiajun Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany
| |
Collapse
|
18
|
Rodphon W, Jaithum K, Linkhum S, Thongsornkleeb C, Tummatorn J, Ruchirawat S. Synthesis of Naphtho[2,3- d]oxazoles via Ag(I) Acid-Mediated Oxazole-Benzannulation of ortho-Alkynylamidoarylketones. J Org Chem 2023. [PMID: 35786915 DOI: 10.1021/acs.joc.2c00940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cascade oxazole-benzannulation for the synthesis of naphtho[2,3-d]oxazoles has been developed employing ortho-alkynylamidoarylketones as substrates. This procedure provides the advantage of preparing a wide variety of substituents on naphtho[2,3-d]oxazole structures. In addition, o-alkynylamidoarylketones could be prepared from easily accessible and a wide variety of commercially available starting materials. Therefore, this method is a judicious choice of strategy to synthesize naphtho[2,3-d]oxazoles with a great variety of substituents. In this work, 27 examples were demonstrated to provide the desired products in moderate to good yields.
Collapse
Affiliation(s)
- Warabhorn Rodphon
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), Chulabhorn Graduate Institute, OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Kanokwan Jaithum
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), Chulabhorn Graduate Institute, OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Sutida Linkhum
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), Chulabhorn Graduate Institute, OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), Chulabhorn Graduate Institute, OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), Chulabhorn Graduate Institute, OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
19
|
Lin ZH, Yao YF, Zhang CP. Deuteration of Arylthianthren-5-ium Salts in CD 3OD. Org Lett 2022; 24:8417-8422. [DOI: 10.1021/acs.orglett.2c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeng-Hui Lin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yu-Fei Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
20
|
Buğday N, Khan S, Yaşar S, Bulut F, Boulebd H, Karabıyık H, Karabıyık H, Öz E, Rehman AU, Özdemir İ. Pd-NHC complex catalyzed C-H bond activation reactions of caffeine and 2-isobuthylthiazole. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
21
|
Wang M, Zhang X, Ma M, Zhao B. Palladium-Catalyzed Synthesis of Esters from Arenes through C-H Thianthrenation. Org Lett 2022; 24:6031-6036. [PMID: 35929821 DOI: 10.1021/acs.orglett.2c02330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The efficient palladium-catalyzed synthesis of esters from readily available arenes has been developed. These C-H bond esterifications were achieved relying on the regioselective thianthrenation to generate the aryl-TT salts, which were treated as reactive electrophilic substrates to couple with phenol formate and N-hydroxysuccinimide (NHS) formate giving access to phenol esters and NHS esters, respectively, in the absence of carbon monoxide. A wide range of functional esters could be prepared with high efficiency under this redox-neutral palladium-catalytic condition. Late-stage functionalization and investigations of synthetic applications demonstrated the potential application of the established platform and these products.
Collapse
Affiliation(s)
- Mengning Wang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomei Zhang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
22
|
Zhao B, Wang Q, Zhu T, Feng B, Ma M. Palladium-Catalyzed Synthesis of C-1 Deuterated Aldehydes from (Hetero) Arenes Mediated by C (sp 2)-H Thianthrenation. Org Lett 2022; 24:5608-5613. [PMID: 35880900 DOI: 10.1021/acs.orglett.2c02328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed deuterated formylation of aryl sulfonium salts is prepared conveniently from readily available arenes, which enables the expedient synthesis of a series of structurally diverse C-1 deuterated aldehydes with 96%-99% deuterium incorporation. The easy to handle and cost-effective DCOONa provides a deuterium source, which can be introduced onto the formyl units with excellent selectivity under the palladium-catalytic redox neutral conditions. This catalytic route can accomplish the direct late-stage C-H functionalization of bioactive molecules and natural product derivatives assisted by C (sp2)-H thianthrenation. Moreover, on the basis of this practical approach, several deuterated drugs and analogues could be prepared with excellent levels of deuterium incorporation.
Collapse
Affiliation(s)
- Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuzhu Wang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Tianxiang Zhu
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Bin Feng
- College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
23
|
Xu G, Han Z, Guo L, Lu H, Gao H. Transition-Metal-Free Cascade Approach for the Synthesis of Functionalized Biaryls by S NAr of Arylhydroxylamines with Arylsulfonium Salts. J Org Chem 2022; 87:10449-10453. [PMID: 35831025 DOI: 10.1021/acs.joc.2c00990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a transition-metal-free protocol for the synthesis of functionalized biaryls through nucleophilic aromatic substitution (SNAr) of arylhydroxylamines to arylsulfonium salts. With this protocol, structurally diverse functionalized biaryls were obtained smoothly in moderate to good yields. Merits of this transformation include mild reaction conditions, broad substrate scope, great functional group tolerance, feasibility of a one-pot procedure, and ease of handing and scale-up.
Collapse
Affiliation(s)
- Gaofei Xu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| | - Zongtao Han
- Shandong Weifang Rainbow Chemical Co., Ltd., Weifang 262737, China
| | - Lirong Guo
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| | - Haifeng Lu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| |
Collapse
|
24
|
Wang P, Chen XY, Wu Y. Recent Advances in Thianthrenation/Phenoxathiination Enabled Site-Selective Functionalization of Arenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractSite-selective functionalization of simple arenes remains a paramount challenge due to the similarity of multiple C–H bonds in the same molecule with similar steric environment and electronic properties. Recently, the site-selective thianthrenation/phenoxathiination of arenes has become an attractive solution to reach this challenging goal and it has been applied in the late-stage functionalization of various bioactive molecules. This short review aims to summarize recent advances in the site-selective C–H functionalization of arenes via aryl thianthrenium salts, as well as mechanistic insights in the remarkable site-selectivity obtained in thianthrenation step.1 Introduction2 Site-Selective Thianthrenation of Arenes and Mechanistic Insight3 Thianthrenation-Enabled Site-Selective Functionalization of Arenes3.1 Thianthrenation-Enabled C(sp
2)–C Bond Formation Reaction3.2 Thianthrenation-Enabled C(sp
2)–X Bond Formation Reaction4 Conclusion and Outlook
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry
- CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences
| | - Xiao-Yue Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry
| |
Collapse
|
25
|
Newar UD, Borra S, Maurya RA. Visible-Light 2,4-Dinitrophenol-Mediated Photoannulation of α-Azidochalcones into 2,5-Diaryloxazoles. Org Lett 2022; 24:4454-4458. [PMID: 35700202 DOI: 10.1021/acs.orglett.2c01691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel and efficient visible-light 2,4-dinitrophenol (2,4-DNP) mediated photoannulation of α-azidochalcones into 2,5-diaryloxazoles was developed. The carbon-carbon double bond of α-azidochalcone was cleaved, leading to the formation of new C-O and C-N bonds in the photoannulation. Control experiments were carried out, and a plausible mechanism of the photoannulation was proposed. The scope of the reaction was studied by synthesizing a series of 2,5-diaryloxazoles including two naturally occurring oxazoles (Texamine and Balsoxin) in excellent yields.
Collapse
Affiliation(s)
- Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satheesh Borra
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
| |
Collapse
|
26
|
Kostyuchenko AS, Uliankin EB, Stasyuk AJ, Samsonenko AL, Zheleznova TY, Shatsauskas AL, Fisyuk AS. Photochemical Synthesis and Electrochemical and Photophysical Properties of 2,7-Diarylbenzo[1,2-d:4,3-d']bis(thiazoles). J Org Chem 2022; 87:6657-6667. [PMID: 35522246 DOI: 10.1021/acs.joc.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article focuses on the development of practical approaches to the preparation of benzo[1,2-d:4,3-d']bis(thiazoles) using blue light-induced photochemical cyclization of N,N'-(1,4-aryl)dithioamides in the presence of p-chloranil as a mild oxidant. The proposed method allows to obtain benzo[1,2-d:4,3-d']bis(thiazoles) containing donor substituents in the conjugated chain. Photophysical and (spectro)electrochemical properties of 2,6-di([2,2'-bithiophen]-5-yl)benzo[1,2-d:4,3-d']bis(thiazole) and -benzo[1,2-d:4,5-d']bis(thiazole) are studied in detail. The properties of the synthesized compounds suggest their potential applications for organic electronics.
Collapse
Affiliation(s)
- Anastasia S Kostyuchenko
- Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation.,Department of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation
| | - Evgenii B Uliankin
- Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation.,Department of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation
| | - Anton J Stasyuk
- Institut de Química Computacional and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna L Samsonenko
- Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation.,Faculty of Chemistry, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland
| | - Tatyana Yu Zheleznova
- Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation
| | - Anton L Shatsauskas
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation
| | - Alexander S Fisyuk
- Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation.,Department of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation
| |
Collapse
|
27
|
He FS, Bao P, Tang Z, Yu F, Deng WP, Wu J. Photoredox-Catalyzed α-Sulfonylation of Ketones from Sulfur Dioxide and Thianthrenium Salts. Org Lett 2022; 24:2955-2960. [PMID: 35416676 DOI: 10.1021/acs.orglett.2c01132] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A photoredox-catalyzed sulfonylation of silyl enol ethers with DABCO·(SO2)2 and thianthrenium salts is achieved, providing diverse β-keto sulfones in moderate to good yields. This protocol features easily accessible starting materials and good functional group compatibility, enabling the introduction of various functionalized sulfonyl groups into ketones. Furthermore, as one of the important industrial raw materials, methanol can be employed as the methyl source to prepare α-methylsulfonated ketones through a methyl thianthrenium intermediate for the first time.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Ping Bao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China.,School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Feiyan Yu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
28
|
Ma NN, Ren JA, Liu X, Chu XQ, Rao W, Shen ZL. Nickel-Catalyzed Direct Cross-Coupling of Aryl Sulfonium Salt with Aryl Bromide. Org Lett 2022; 24:1953-1957. [PMID: 35244408 DOI: 10.1021/acs.orglett.2c00357] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct cross-couplings of aryl sulfonium salts with aryl halides could be achieved by using nickel as a reaction catalyst. The reactions proceeded efficiently via C-S bond activation in the presence of magnesium turnings and lithium chloride in THF at ambient temperature to afford the corresponding biaryls in moderate to good yields, potentially serving as an attractive alternative to conventional cross-coupling reactions employing preprepared organometallic reagents.
Collapse
Affiliation(s)
- Na-Na Ma
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Ao Ren
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiang Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
29
|
Li Q, Huang J, Cao Z, Zhang J, Wu J. Photoredox-catalyzed reaction of thianthrenium salts, sulfur dioxide and hydrazines. Org Chem Front 2022. [DOI: 10.1039/d2qo00768a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A photoredox-catalyzed reaction of thianthrenium salts, hydrazines and DABCO·(SO2)2 is accomplished, providing diverse arenesulfonohydrazides in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Qiangwei Li
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiapian Huang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zenghui Cao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jun Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
30
|
Yang X, Guo X, Yuan X, Chen B. K 2S 2O 8-promoted rearrangement of nitrones for the synthesis of benzo[ d]oxazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00680d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An efficient route for the synthesis of valuable benzoxazoles has been developed through self-oxidative cyclization with N–O bond cleavage.
Collapse
Affiliation(s)
- Xueying Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Xin Guo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
| | - Xinglong Yuan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
31
|
Tian ZY, Zhang CP. Visible-Light-Initiated Catalyst-Free Trifluoromethylselenolation of Arylsulfonium Salts with [Me4N][SeCF3]. Org Chem Front 2022. [DOI: 10.1039/d2qo00235c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The redox potential gap between arylsulfonium salt and [Me4N][SeCF3] has been clearly disclosed by CV measurements. Construction of carbon-selenium bond by overcoming this gap without using catalysts and additives is...
Collapse
|
32
|
Zhang YL, Wang GH, Wu Y, Zhu CY, Wang P. Construction of α-Amino Azines via Thianthrenation-Enabled Photocatalyzed Hydroarylation of Azine-Substituted Enamides with Arenes. Org Lett 2021; 23:8522-8526. [PMID: 34662135 DOI: 10.1021/acs.orglett.1c03229] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Amino azines are widely found in pharmaceuticals and ligands. Herein, we report a practical method for accessing this class of compounds via photocatalyzed hydroarylation of azine-substituted enamides with the in situ-generated aryl thianthrenium salts as the radical precursor. This reaction features a broad substrate scope, good functional group tolerance, and mild conditions and is suitable for the late-stage installation of α-amino azines in complex structures.
Collapse
Affiliation(s)
- Yu-Lan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Gang-Hu Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China
| | - Chun-Yin Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
33
|
Chen Y, Wen S, Tian Q, Zhang Y, Cheng G. Transition Metal-Free C-H Thiolation via Sulfonium Salts Using β-Sulfinylesters as the Sulfur Source. Org Lett 2021; 23:7905-7909. [PMID: 34579530 DOI: 10.1021/acs.orglett.1c02912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We disclose a direct C(sp)-, C(sp2)-, and C(sp3)-H thiolation reaction using β-sulfinylesters as the versatile sulfur source. The key step of this protocol is chemoselective C-S bond cleavage of the sulfonium salts that are formed in situ from the corresponding alkenes, alkynes, and 1,3-dicarboxyl compounds with β-sulfinylesters. The successful capture of the acrylate byproduct supports a retro-Michael reaction mechanism.
Collapse
Affiliation(s)
- Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Si Wen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
34
|
Chen C, Wang M, Lu H, Zhao B, Shi Z. Enabling the Use of Alkyl Thianthrenium Salts in Cross‐Coupling Reactions by Copper Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Binlin Zhao
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
35
|
Chen C, Wang M, Lu H, Zhao B, Shi Z. Enabling the Use of Alkyl Thianthrenium Salts in Cross-Coupling Reactions by Copper Catalysis. Angew Chem Int Ed Engl 2021; 60:21756-21760. [PMID: 34378844 DOI: 10.1002/anie.202109723] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Alkyl groups are one of the most widely used groups in organic synthesis. Here, a a series of thianthrenium salts have been synthesized that act as reliable alkylation reagents and readily engage in copper-catalyzed Sonogashira reactions to build C(sp3 )-C(sp) bonds under mild photochemical conditions. Diverse alkyl thianthrenium salts, including methyl and disubstituted thianthrenium salts, are employed with great functional breadth, since sensitive Cl, Br, and I atoms, which are poorly tolerated in conventional approaches, are compatible. The generality of the developed alkyl reagents has also been demonstrated in copper-catalyzed Kumada reactions.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
36
|
Abstract
![]()
The construction
of (hetero)biaryls, which are ubiquitous scaffolds
among medical substances, functional materials, and agrochemicals,
constitutes a key application of cross-coupling methods. However,
these usually require multiple synthetic steps. Herein, we report
a simple photoinduced and catalyst-free C–H/C–H (hetero)arylation
cross-coupling through aryl thianthrenium salts, which are formed
site-selectively by direct C–H functionalization. The key to
this approach is the UV-light, which can disrupt the C–S bond
to form thianthrene radical cations and aryl radicals.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Congjun Yu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Wenjing Liang
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|