1
|
Wu TT, Wang ZL, Xu YH. Cobalt-Catalyzed Regioselective Intramolecular Hydrosilylation of Olefins to Access Sila-heterocycles. Org Lett 2025; 27:4695-4700. [PMID: 40278842 DOI: 10.1021/acs.orglett.5c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
An efficient and straightforward cobalt-catalyzed regioselective intramolecular hydrosilylation of olefins has been developed. Regioselectivity is controlled by the choice of ligands and substrates, which operate through two distinct mechanisms. This method has been successfully applied to both terminal and internal alkenes and phenyl and alkyl tethers between the silane and the alkene, demonstrating its versatility across a broad range of substrates.
Collapse
Affiliation(s)
- Teng-Teng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Zhu CF, Tian Y, Mai JJ, Shi M, Dong X, Shen D, Shen MH, Xu HD. Cobalt-Catalyzed Synthesis of Alkenyl Heterocycles via Regioselective Intramolecular 1,4-Hydrofunctionalization of Dienes. Org Lett 2024; 26:8260-8266. [PMID: 39321353 DOI: 10.1021/acs.orglett.4c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We report a novel cobalt-catalyzed intramolecular 1,4-hydrofunctionalization of dienes. The reaction proceeds under mild conditions and is amenable to N- and O-nucleophiles. The protocol exhibits exclusive regioselectivity, yielding a number of different alkenyl heterocycles, including but not limited to dihydroisobenzofurans, isochromanes, tetrahydrofurans, morpholines, lactones, and isoindolines. Experimental studies were performed to offer some insight into the different mechanistic pathways and to rationalize the regio- and stereoselectivities of the reaction.
Collapse
Affiliation(s)
- Chi-Fan Zhu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yuan Tian
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jun-Ju Mai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mingyuan Shi
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiasen Dong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Dongping Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
3
|
Wang H, Jie X, Su T, Wu Q, Kuang J, Sun Z, Zhao Y, Chong Q, Guo Y, Zhang Z, Meng F. Cobalt-Catalyzed Chemo- and Stereoselective Transfer Semihydrogenation of 1,3-Dienes with Water as a Hydrogen Source. J Am Chem Soc 2024; 146:23476-23486. [PMID: 39110419 DOI: 10.1021/jacs.4c06925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
(Z)-1,2-Disubstituted, trisubstituted, and tetrasubstituted alkenes are not only important units in medicinal chemistry, natural product synthesis, and material science but also useful intermediates in organic synthesis. Development of catalytic stereoselective transformations to access multisubstituted alkenes with various substitution patterns from easily accessible modular starting materials and readily available catalysts is a crucial goal in the field of catalysis. Water is an ideal hydrogen source for catalytic transfer hydrogenation despite of the high difficulty to activate water. Here, we report a cobalt-catalyzed protocol for regio- and stereoselective transfer semihydrogenation of 1,3-dienes to construct a broad scope of (Z)-1,2-disubstituted, (Z)-, (E)-trisubstituted, and tetrasubstituted alkenes in high stereoselectivity with H2O as the hydrogen source. Mechanistic studies revealed that the reactions proceeded through a unique Co(I)/Co(III) cycle and involved a 1,4-cobalt shift process, which is an unprecedented reaction pathway, providing a new platform for modular synthesis of multisubstituted alkenes as well as opportunities for designing novel reaction modes and pushing forward the advancement in organocobalt chemistry.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaofeng Jie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Ting Su
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qianghui Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Kuang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhao Sun
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yingying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei 430079, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Song Y, Fu C, Zheng J, Ma S. Copper-catalyzed remote double functionalization of allenynes. Chem Sci 2024; 15:7789-7794. [PMID: 38784739 PMCID: PMC11110152 DOI: 10.1039/d4sc00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Addition reactions of molecules with conjugated or non-conjugated multiple unsaturated C-C bonds are very attractive yet challenging due to the versatile issues of chemo-, regio-, and stereo-selectivities. Especially for the readily available conjugated allenyne compounds, the reactivities have not been explored. The first example of copper-catalyzed 2,5-hydrofunctionalization and 2,5-difunctionalization of allenynes, which provides a facile access to versatile conjugated vinylic allenes with a C-B or C-Si bond, has been developed. This mild protocol has a broad substrate scope tolerating many synthetically useful functional groups. Due to the highly functionalized nature of the products, they have been demonstrated as platform molecules for the efficient syntheses of monocyclic products including poly-substituted benzenes, bicyclic compounds, and highly functionalized allene molecules.
Collapse
Affiliation(s)
- Yulong Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| |
Collapse
|
5
|
Liu P, Peng J, Bai Y, Li J. Siloxane-containing phosphine (oxide) ligands for enhanced catalytic activity of cobalt complexes for hydrosilylation reactions. Org Biomol Chem 2024; 22:3304-3313. [PMID: 38578066 DOI: 10.1039/d4ob00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A series of siloxane-containing phosphine (oxide) ligands have been designed and synthesized. These phosphine (oxide) ligands contain silicon atoms, which can impart better solubility in the relevant media, thereby improving certain catalytic performances. The hydrosilylation of olefins catalyzed by these metal phosphine (oxide) complexes has been conducted under mild reaction conditions.
Collapse
Affiliation(s)
- Peng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiayun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Yang L, Wu X, Lu W, Lu Y, Zhang Z. Dirhodium(II)/DPPM Catalyzed 1,2-Hydrosilylation of Conjugated Dienes with Tertiary Silanes. Org Lett 2024; 26:2287-2291. [PMID: 38456813 DOI: 10.1021/acs.orglett.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A simple and efficient Rh2(OAc)4/DPPM (bis(diphenylphosphanyl)methane) catalyzed regioselective 1,2-anti-Markovnikov hydrosilylation of conjugated dienes with various tertiary silanes gave homoallylic silanes in acetonitrile, which tolerate broad functional groups. Control experiments proved that no π-allyl transition metal intermediates were involved in this 1,2-anti-Markovnikov hydrosilylation. Dirhodium hydride species was observed in hydrosilylation, suggesting that a direct insertion of the terminal double bond into a Rh-H bond is involved in this reaction.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenkui Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Sun W, Hu MY, Lu ZS, Huang MY, Zhang XY, Zhu SF. Iron-Catalyzed Stereoconvergent 1,4-Hydrosilylation of Conjugated Dienes. Angew Chem Int Ed Engl 2023:e202315473. [PMID: 37934194 DOI: 10.1002/anie.202315473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Stereoconvergent transformation of E/Z mixtures of olefins to products with a single steric configuration is of great practical importance but hard to achieve. Herein, we report an iron-catalyzed stereoconvergent 1,4-hydrosilylation reactions of E/Z mixtures of readily available conjugated dienes for the synthesis of Z-allylsilanes with high regioselectivity and exclusive stereoselectivity. Mechanistic studies suggest that the reactions most likely proceed through a two-electron redox mechanism. The stereoselectivity of the reactions is ultimately determined by the crowded reaction cavity of the α-diimine ligand-modified iron catalyst, which forces the conjugated diene to coordinate with the iron center in a cis conformation, which in turn results in generation of an anti-π-allyl iron intermediate. The mechanism of this stereoconvergent transformation differs from previously reported mechanisms of other related reactions involving radicals or metal-hydride species.
Collapse
Affiliation(s)
- Wei Sun
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Meng-Yang Hu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhan-Sheng Lu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yu Zhang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Chen K, Zhu H, Liu S, Bai J, Guo Y, Ding K, Peng Q, Wang X. Switch in Selectivities by Dinuclear Nickel Catalysis: 1,4-Hydroarylation of 1,3-Dienes to Z-Olefins. J Am Chem Soc 2023. [PMID: 37903244 DOI: 10.1021/jacs.3c09283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
One of the most challenging tasks in organic synthesis is to control selectivities, especially switching the well-known selectivity to obtain new isomers that were previously inaccessible. Inspired by biological catalysis involving multiple metal centers, catalysis enabled by binuclear metal complexes offers the potential to induce reactivity and selectivity that might not be available to mononuclear catalysts. Herein, we describe that using a macrocyclic bis pyridyl diimine dinickel complex as the catalyst, the commonly observed 4,3-regioselectivity of hydroarylation of 1,3-dienes is switched to 1,4-hydroarylation with thermodynamically less stable Z-stereoselectivity, offering challenging synthetic target Z-olefins. DFT calculations show that the activation of 1,3-diene proceeds through dinuclear Ni-diolefin coordination, and the synergistic effects of two Ni nuclei enable reactivity and selectivity of this binuclear catalysis substantially different from those of mononuclear nickel complexes in the current reaction.
Collapse
Affiliation(s)
- Ke Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hongdan Zhu
- State Key Laboratory of Elemento-Organic Chemistry and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuang Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
9
|
Wang ZL, Li Q, Yang MW, Song ZX, Xiao ZY, Ma WW, Zhao JB, Xu YH. Regio- and enantioselective CuH-catalyzed 1,2- and 1,4-hydrosilylation of 1,3-enynes. Nat Commun 2023; 14:5048. [PMID: 37598226 PMCID: PMC10439940 DOI: 10.1038/s41467-023-40703-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
We report a copper-catalyzed ligand-controlled selective 1,2- and 1,4-hydrosilylation of 1,3-enynes, which furnishes enantiomerically enriched propargyl- and 1,2-allenylsilane products in high yields with excellent enantioselectivities (up to 99% ee). This reaction proceeds under mild conditions, shows broad substrate scope for both 1,3-enynes and trihydrosilanes, and displays excellent regioselectivities. Mechanistic studies based on deuterium-labeling reactions and density functional theory (DFT) calculations suggest that allenylcopper is the dominant reactive intermediate under both 1,2- and 1,4-hydrosilylation conditions, and it undergoes metathesis with silanes via selective four-membered or six-membered transition state, depending on the nature of the ligand. The weak interactions between the ligands and the reacting partners are found to be the key controlling factor for the observed regioselectivity switch. The origin of high enantiocontrol in the 1,4-hydrosilylation is also revealed by high level DLPNO-CCSD(T) calculations.
Collapse
Affiliation(s)
- Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Qi Li
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Meng-Wei Yang
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Zhao-Xin Song
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Zhen-Yu Xiao
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Wei-Wei Ma
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jin-Bo Zhao
- Faculty of Chemistry and Life Science, Changchun University of Technology, 130012, Changchun, P.R. China.
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China.
| |
Collapse
|
10
|
Li Y, Chen J, Ng JJW, Chiba S. Generation of Allylmagnesium Reagents by Hydromagnesiation of 2-Aryl-1,3-dienes. Angew Chem Int Ed Engl 2023; 62:e202217735. [PMID: 36637448 DOI: 10.1002/anie.202217735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/14/2023]
Abstract
A protocol for the generation of allylmagnesium reagents from 2-aryl-1,3-dienes was developed using magnesium hydride (MgH2 ) that is generated in situ by solvothermal treatment of sodium hydride (NaH) and magnesium iodide (MgI2 ) in tetrahydrofuran (THF). Downstream functionalization of the resulting allylmagnesium reagents with carbonyl compounds or alkyl (pseudo)halides delivers branched products having an allylic quaternary carbon center, whereas that with chlorosilanes resulted in formation of linear allylsilanes in regio and stereoselective manners. Further derivatizations of the homoallylic alcohols and allylsilanes were also demonstrated.
Collapse
Affiliation(s)
- Yihang Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jiahua Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jaslyn Jing Wen Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
11
|
Yang SN, Liu CH, He LB, Zheng H, Kuai CS, Wan B, Ji DW, Chen QA. Ligand-controlled regiodivergence in cobalt-catalyzed hydrosilylation of isoprene. Org Chem Front 2023. [DOI: 10.1039/d3qo00041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
An atom-economical, regiodivergent hydrosilylation reaction of isoprene was developed using an Earth-abundant cobalt catalyst through variation of ligands.
Collapse
|
12
|
Li S, Xu JL, Xu YH. Copper-Catalyzed Enantioselective Hydrosilylation of Allenes to Access Axially Chiral (Cyclohexylidene)ethyl Silanes. Org Lett 2022; 24:6054-6059. [PMID: 35948075 DOI: 10.1021/acs.orglett.2c02359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel strategy of copper-catalyzed regio- and enantioselective hydrosilylation of 4-substituted vinylidenecyclohexanes with silanes was developed. In this protocol, various allenes and silanes were used to afford the corresponding (cyclohexylidene)ethyl silanes in moderate to high yields with good enantioselectivities.
Collapse
Affiliation(s)
- Shu Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian-Lin Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
13
|
Copper-catalyzed regio- and stereo-selective hydrosilylation of terminal allenes to access (E)-allylsilanes. Nat Commun 2022; 13:3691. [PMID: 35760931 PMCID: PMC9237096 DOI: 10.1038/s41467-022-31458-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Regioselectivity and stereoselectivity control in hydrosilylation of terminal allenes is challeging. Although the selective synthesis of vinylsilanes, branched allylsilanes or linear (Z)-allylsilanes have been achieved, transition-metal catalyzed hydrosilylation of terminal allenes to access (E)-allylsilane is difficult. Herein, we report a copper-catalyzed selective hydrosilylation reaction of terminal allenes to access (E)-allylsilanes under mild reaction conditions. The reaction shows broad substrate scope, representing an efficient method to prepare trisubstituted (E)-allylsilanes through hydrosilylation reaction of allenes and can also be applied in the synthesis of disubstituted (E)-allylsilanes. The mechanism study reveals that the E-selectivity is kinetically controlled by the catalyst but not by the thermodynamically isomerization of the (Z)-isomer. Regio- and stereoselective transition-metal catalysed hydrosilylation of terminal allenes to access (E)-allylsilanes are challenging organic transformations. Herein, the authors synthesize (E)-allylsilanes via copper-catalyzed hydrosilylation of terminal allenes.
Collapse
|
14
|
Wang Y, Wang ZL, Ma WW, Xu YH. Copper-Catalyzed Markovnikov Selective 3,4-Hydrosilylation of 2-Substituted 1,3-Dienes. Org Lett 2022; 24:4081-4086. [PMID: 35648807 DOI: 10.1021/acs.orglett.2c01558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A copper-catalyzed regioselective Markovnikov 3,4-hydrosilylation of 2-substituted 1,3-dienes has been accomplished. A wide range of 2-substituted 1,3-dienes and trihydrosilanes are compatible under the optimal conditions. The bisphosphine ligand with a rigid backbone provides the Markovnikov 3,4-hydrosilylation product in better yield and selectivity. Besides, the synthetic utilities of the allylsilanes also were demonstrated by their flexible derivatizations.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei-Wei Ma
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
15
|
Xu JL, Xu ZY, Wang ZL, Ma WW, Sun XY, Fu Y, Xu YH. Copper-Catalyzed Regiodivergent and Enantioselective Hydrosilylation of Allenes. J Am Chem Soc 2022; 144:5535-5542. [PMID: 35297616 DOI: 10.1021/jacs.2c00260] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A copper-catalyzed regiodivergent hydrosilylation of a wide range of simple allenes is reported. Linear and branched allylsilanes were formed by judicious choice of solvents. Furthermore, branched allylsilanes were obtained with high enantioselectivity (up to 97% enantiomeric excess) with the aid of a C2-symmetric bisphosphine ligand in the unprecedented asymmetric allene hydrosilylation.
Collapse
Affiliation(s)
- Jian-Lin Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhe-Yuan Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei-Wei Ma
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xin-Yue Sun
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yao Fu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
16
|
Sun W, Li MP, Li LJ, Huang Q, Hu MY, Zhu SF. Phenanthroline-imine ligands for iron-catalyzed alkene hydrosilylation. Chem Sci 2022; 13:2721-2728. [PMID: 35340863 PMCID: PMC8890093 DOI: 10.1039/d1sc06727c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/09/2022] [Indexed: 01/13/2023] Open
Abstract
Iron-catalyzed organic reactions have been attracting increasing research interest but still have serious limitations on activity, selectivity, functional group tolerance, and stability relative to those of precious metal catalysts. Progress in this area will require two key developments: new ligands that can impart new reactivity to iron catalysts and elucidation of the mechanisms of iron catalysis. Herein, we report the development of novel 2-imino-9-aryl-1,10-phenanthrolinyl iron complexes that catalyze both anti-Markovnikov hydrosilylation of terminal alkenes and 1,2-anti-Markovnikov hydrosilylation of various conjugated dienes. Specifically, we achieved the first examples of highly 1,2-anti-Markovnikov hydrosilylation reactions of aryl-substituted 1,3-dienes and 1,1-dialkyl 1,3-dienes with these newly developed iron catalysts. Mechanistic studies suggest that the reactions may involve an Fe(0)-Fe(ii) catalytic cycle and that the extremely crowded environment around the iron center hinders chelating coordination between the diene and the iron atom, thus driving migration of the hydride from the silane to the less-hindered, terminal end of the conjugated diene and ultimately leading to the observed 1,2-anti-Markovnikov selectivity. Our findings, which have expanded the types of iron catalysts available for hydrosilylation reactions and deepened our understanding of the mechanism of iron catalysis, may inspire the development of new iron catalysts and iron-catalyzed reactions.
Collapse
Affiliation(s)
- Wei Sun
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ming-Peng Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Lu-Jie Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Qiang Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Meng-Yang Hu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
17
|
Xing M, Cui H, Zhang C. Nickel-Catalyzed Reductive Cross-Coupling of Alkyl Bromides and Chlorosilanes. Org Lett 2021; 23:7645-7649. [PMID: 34551258 DOI: 10.1021/acs.orglett.1c02887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel nickel-catalyzed highly selective reductive cross-coupling of alkyl bromides and chlorosilanes to construct the C-Si bond has been developed. Under benign reaction conditions, a series of structurally interesting organosilanes can be accessed without Ni-catalyzed isomerization. The utility of this chemistry is illustrated by further transformations of the product. Moreover, the radical mechanism of the reaction is illustrated by control experiments.
Collapse
Affiliation(s)
- Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|