1
|
Doan TH, Chardon A, Vanthuyne N, Ramos TN, Tumanov N, Fusaro L, Albalat M, Collard L, Wouters J, Champagne B, Berionni G. Atropisomerism in Triarylboranes: Lewis Base Assisted Rotation at C-B Stereogenic Axis in Asymmetrical Boron Lewis Acids. Angew Chem Int Ed Engl 2025; 64:e202421931. [PMID: 39969421 DOI: 10.1002/anie.202421931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
The synthesis, properties and structural requirements for atropisomerism at the C-B bond in boron Lewis acids such as triarylboranes have been understudied so far. We report the first series of atropisomeric triarylboranes constituted of a naphthyl rotor and a dihydro-9-bora-anthracenyl stator subunits, connected by a C-B stereogenic axis. Through systematic crystallographic, kinetic, photophysical and quantum chemical studies, the mechanisms, rates and barriers of diastereomerization and enantiomerization were determined. The orthogonal arrangement between the naphthyl and the dihydro-9-bora-anthracenyl scaffold moiety hamper the rotation of these two moieties around their Csp2-B bonds, enabling chiral resolution leading to enantiopure triarylboranes of high configurational stability. Furthermore, we fully elucidated a Lewis-base assisted pathway controlling the rotation speed at the C-B stereogenic axis, enabling the atropisomerical behavior of these triarylboranes be controlled by a Lewis base.
Collapse
Affiliation(s)
- Thu-Hong Doan
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Aurélien Chardon
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Med, FSCM, Chiropole, Marseille, France
| | - Tárcius N Ramos
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Nikolay Tumanov
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Luca Fusaro
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Muriel Albalat
- Aix Marseille Univ, CNRS, Centrale Med, FSCM, Chiropole, Marseille, France
| | - Laurent Collard
- Institute of Condensed Matter and Nanosciences-Molecules, UCLouvain -, Place Louis Pasteur 1, Louvain la Neuve, bte L4.01.03
| | - Johan Wouters
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Benoît Champagne
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Guillaume Berionni
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| |
Collapse
|
2
|
Shi Y, Li C, Di J, Xue Y, Jia Y, Duan J, Hu X, Tian Y, Li Y, Sun C, Zhang N, Xiong Y, Jin T, Chen P. Polycationic Open-Shell Cyclophanes: Synthesis of Electron-Rich Chiral Macrocycles, and Redox-Dependent Electronic States. Angew Chem Int Ed Engl 2024; 63:e202402800. [PMID: 38411404 DOI: 10.1002/anie.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yuting Xue
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yu Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yanqiu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Cuiping Sun
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Yan Xiong
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography University of California, San Diego La Jolla, 92093, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
3
|
Kótai B, Laczkó G, Hamza A, Pápai I. Stereocontrol via Propeller Chirality in FLP-Catalyzed Asymmetric Hydrogenation. Chemistry 2024; 30:e202400241. [PMID: 38294415 DOI: 10.1002/chem.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/01/2024]
Abstract
Utilization of chiral frustrated Lewis pairs as catalysts in enantioselective hydrogenation of unsaturated molecules represents a promising approach in asymmetric synthesis. In our effort to improve our current understanding of the factors governing the stereoselectivity in these catalytic processes, herein we examined the mechanism of direct hydrogenation of aromatic enamines catalyzed by a binaphthyl-based chiral amino-borane. Our computational analysis reveals that only one particular conformer of the key borohydride reaction intermediate can be regarded as a reactive form of this species. This borohydride conformer has a well-defined chiral propeller shape, which induces facial selectivity in the hydride transfer to pro-chiral iminium intermediates. The propeller chirality of the reactive borohydride conformer is generated by the axially chiral binaphthyl scaffold of the amino-borane catalyst through stabilizing π-π stacking interactions. This new computational insight can be readily used to interpret the high degree of stereoinduction observed for these reactions. We expect that the concept of chirality relay could be further exploited in catalyst design endeavors.
Collapse
Affiliation(s)
- B Kótai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar tudósok körútja 2
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518, Budapest, Hungary
| | - G Laczkó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar tudósok körútja 2
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518, Budapest, Hungary
| | - A Hamza
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar tudósok körútja 2
| | - I Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar tudósok körútja 2
| |
Collapse
|
4
|
Vázquez-Domínguez P, Rizo JF, Arteaga JF, Jacquemin D, Favereau L, Ros A, Pischel U. Azaborahelicene fluorophores derived from four-coordinate N, C-boron chelates: synthesis, photophysical and chiroptical properties. Org Chem Front 2024; 11:843-853. [PMID: 38298564 PMCID: PMC10825847 DOI: 10.1039/d3qo01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
A series of six azaborahelicenes with varying electron-donor substitution at the 4-position of the aryl residue (i.e., naphthyl) or with variable π-extension of the aryl residue (thianthrenyl, anthryl, pyrenyl) was prepared with an efficient and flexible synthetic protocol. These different types of functionalization afforded notably pronounced intramolecular charge-transfer (ICT) character for the dyes with the strongest electron donor substitution (NMe2) or easiest to oxidize aryl residues, as evidenced by photophysical investigations. These effects also impact the corresponding chiroptical properties of the separated M- and P-enantiomers, which notably display circularly polarized luminescence (CPL) with dissymmetry factors in the order of magnitude of 10-4 to 10-3. Theoretical calculations confirm the optical spectroscopy data and are in agreement with the proposed involvement of ICT processes.
Collapse
Affiliation(s)
- Pablo Vázquez-Domínguez
- Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49 E-41092 Seville Spain
- Department of Organic Chemistry, Innovation Centre in Advanced Chemistry, ORFEO-CINQA, University of Seville C/Prof. García González 1 41012 Seville Spain
| | - José Francisco Rizo
- Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49 E-41092 Seville Spain
| | - Jesús F Arteaga
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva Campus de El Carmen s/n E-21071 Huelva Spain
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230 F-44000 Nantes France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | | | - Abel Ros
- Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49 E-41092 Seville Spain
| | - Uwe Pischel
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva Campus de El Carmen s/n E-21071 Huelva Spain
| |
Collapse
|
5
|
Jiao Y, Sun Z, Wang Z, Fu Y, Zhang F. Synthesis of Nonsymmetric NBN-Embedded [6]- and [7]Helicenes with Amplified Activities. Org Lett 2023. [PMID: 37991932 DOI: 10.1021/acs.orglett.3c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Two C1-symmetric heterohelicenes were constructed by nonsymmetrically extending the ortho-fused structures of a C2v-symmetric NBN-embedded phenalene derivative and featured intense luminescence, large Stokes shifts, and successive reversible redox behaviors. Increasing one fused phenyl unit in such a helical structure led to a 10-fold-enhanced dissymmetry factor. Their strong double hydrogen-bond-donating capability makes them distinctly red-shifted in absorption, emission, and CD and CPL spectra upon the addition of fluoride anion.
Collapse
Affiliation(s)
- Yang Jiao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zuobang Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhiheng Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Zhao F, Zhao J, Liu H, Wang Y, Duan J, Li C, Di J, Zhang N, Zheng X, Chen P. Synthesis of π-Conjugated Chiral Organoborane Macrocycles with Blue to Near-Infrared Emissions and the Diradical Character of Cations. J Am Chem Soc 2023; 145:10092-10103. [PMID: 37125835 DOI: 10.1021/jacs.3c00306] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly emissive π-conjugated macrocycles with tunable circularly polarized luminescence (CPL) have sparked theoretical and synthetic interests in recent years. Herein, we report a synthetic approach to obtain new chiral organoborane macrocycles (CMC1, CMC2, and CMC3) that are built on the structurally chiral [5]helicenes and highly luminescent triarylborane/amine moieties embedded into the cyclic systems. These rarely accessible B/N-doped main-group chiral macrocycles show a unique topology dependence of the optoelectronic and chiroptical properties. CMC1 and CMC2 show a higher luminescence dissymmetry factor (glum) together with an enhanced CPL brightness (BCPL) as compared with CMC3. Electronic effects were also tuned and resulted in bathochromic shifts of their emission and CPL responses from blue for CMC1 to the near-infrared (NIR) region for CMC3. Furthermore, chemical oxidations of the N donor sites in CMC1 gave rise to a highly stable radical cation (CMC1·+SbF6-) and diradical dication species (CMC12·2+2SbF6-) that serve as a rare example of a positively charged open-shell chiral macrocycle.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
7
|
Cei M, Di Bari L, Zinna F. Circularly polarized luminescence of helicenes: A data-informed insight. Chirality 2023; 35:192-210. [PMID: 36707940 DOI: 10.1002/chir.23535] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Helicenes are an interesting scaffold for chiroptical properties and in particular circularly polarized luminescence (CPL). In this short review, we collect the luminescence (glum ) and absorption (gabs ) dissymmetry factors associated to the first Cotton effect of the electronic circular dichroism (ECD) spectrum. Considering the data for 170 [n]-helicenes (n = 4-11), overall we found reasonable correlations between glum and gabs . Despite a few notable exceptions, this would confirm a similarity in the stereochemistry of the ground and emitting excited states for most helicenes. These results may be useful in rationalizing chiroptical data and help chemists in designing new helicene structures with the desired CPL properties.
Collapse
Affiliation(s)
- Matteo Cei
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Pecorari D, Giuliani E, Mazzanti A, Stagni S, Fiorini V, Vigarani G, Zinna F, Pescitelli G, Mancinelli M. Synthesis and Stereodynamic and Emission Properties of Dissymmetric Bis-Aryl Carbazole Boranes and Identification of a CPL-Active B-C Atropisomeric Compound. J Org Chem 2023; 88:871-881. [PMID: 36599041 PMCID: PMC9872089 DOI: 10.1021/acs.joc.2c02209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We synthesized bis-aryl carbazole borane derivatives having emissive properties and axial chirality. The resolution of a thermally stable atropisomeric pair (compound 1b), due to a B-C chiral axis, was achieved by chiral stationary-phase high-performance liquid chromatography (CSP-HPLC). Complete photophysical properties of all compounds were measured and simulated by time-dependent density functional theory (TD-DFT) calculations of the complete fluorescence cycle, and circularly polarized luminescence spectra were obtained for the atropisomers of compound 1b, whose absolute configuration was derived using a TD-DFT simulation of the electronic circular dichroism (ECD) spectra.
Collapse
Affiliation(s)
- Daniel Pecorari
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Emanuele Giuliani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Mazzanti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Stagni
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Valentina Fiorini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giulia Vigarani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Zinna
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Michele Mancinelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy,
| |
Collapse
|
9
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
10
|
Xia G, Wang L, Xia H, Wu Y, Wang Y, Hu H, Lin S. Circularly polarized luminescence of talarolactones (+)/(−)-A and (+)/(−)-C: The application of CPL-calculation in stereochemical assignment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Zhang S, Chen JF, Hu G, Zhang N, Wang N, Yin X, Chen P. Synthesis, Characterization, and Photophysical Properties of Triptycene-Based Chiral Organoboranes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Guofei Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, People’s Republic of China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| |
Collapse
|
12
|
Wang M, Zhao CH. Chiral Triarylborane-based Small Organic Molecules for Circularly Polarized Luminescence. CHEM REC 2021; 22:e202100199. [PMID: 34559456 DOI: 10.1002/tcr.202100199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
Circularly polarized luminescence (CPL) has shown promising application potentials in 3D display, optical data storage, smart sensors/probers, CPL lasers, and light source for asymmetric photosynthesis. In the last decade, the CPL-active small organic molecules (CPL-SOMs) have attracted rapidly increasing research interest owing to the great advantages of SOMs, such as high luminescence efficiency, facile modification of chemical structure, fine emission wavelength tuning, precise relationships between structure and properties, and as well as easy fabrication. Promoted by the unique effects of boryl group, such as strong electron-accepting ability, great steric effect, and Lewis acidity to bind with Lewis bases, we herein summarized our recent research results about the creation of CPL-SOMs by modification of chiral scaffolds, such as [2.2]paracyclophane, [5]/[7]helicene, and binaphthyl, with boryl group. The preliminary results have well demonstrated that the chiral triarylborane-based SOMs exhibit promising CPL properties, such as intense CPL in combination of high luminescence dissymmetry factor (|glum |) with high fluorescence efficiency, solvent-induced sign inversion, facile emission wavelength tuning, high fluorescence efficiency in the solid, and substituent-induced sign inversion.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Cui-Hua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|