1
|
Qin GQ, Wang GY, Shen QC, Yu WH, Song JG, Huang XJ, Dong L, Wu ZL, Ye WC, Hu LJ, Wang Y. Secupyritines A-C, Three Natural Propellane Securinega Alkaloids: Structure Elucidation and Total Synthesis Based on Biogenetic Building Blocks. Angew Chem Int Ed Engl 2025; 64:e202423900. [PMID: 39754344 DOI: 10.1002/anie.202423900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/06/2025]
Abstract
Secupyritines A-C are unique polycyclic Securinega alkaloids isolated from medicinal plant Flueggea suffruticosa. They feature a distinctive 6/6/6/5/6 fused pentacyclic ring system with a highly strained 2-oxa-6-aza[4.4.3]propellane core. Their structures with absolute configurations were elucidated through a comprehensive approach involving nuclear magnetic resonance (NMR) spectroscopy, single-crystal X-ray crystallography, electronic circular dichroism (ECD) calculations, and total synthesis. The total synthesis of secupyritines A-C was achieved in 14 or 16 steps, employing a synthesis strategy based on biogenetic building blocks. Key elements of the synthetic procedures include a vinylogous Mannich-type reaction to construct the sp3-sp2 attached-ring system, a Suzuki coupling reaction to build the piperidine ring, and an intramolecular aza-Michael addition reaction to establish the propellane skeleton. Formal asymmetric synthesis of secupyritines A-C was also presented.
Collapse
Affiliation(s)
- Guan-Qiu Qin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Gui-Yang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Qin-Cheng Shen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Wen-Hua Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Lu Dong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Zhen-Long Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Li-Jun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China)
| |
Collapse
|
2
|
Chen LY, Luo EE, Pan Y, Liang CQ, Yu MY, Qin XJ. Acetylcholinesterase inhibitory phloroglucinols from tropic Rhodomyrtus tomentosa. PHYTOCHEMISTRY 2024; 228:114254. [PMID: 39159738 DOI: 10.1016/j.phytochem.2024.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
Four previously undescribed phloroglucinols, including three pairs of enantiomers, (±)-rhodotomentodimer F, (±)-rhodotomentodimer G, and (±)-rhodotomentomonomer E, and one phloroglucinol-sesquiterpene meroterpenoid, rhodotomentodione E, together with one previously reported congener, (±)-rhodomyrtosone A, were obtained from the leaves of Rhodomyrtus tomentosa. The structures including absolute configurations of previously undescribed isolates were elucidated by extensive spectroscopic analysis (HRESIMS and NMR), ECD calculations, and single-crystal X-ray diffraction. (±)-Rhodotomentodimer F is a rare phloroglucinol derivative conjugated by a β-triketone moiety and an unprecedented resorcinol unit via the formation of a rare bis-furan ring system, whereas (±)-rhodotomentomonomer E shares a rearranged pentacyclic scaffold. Pharmacologically, (±)-rhodotomentomonomer E showed the strongest human acetylcholinesterase (hAChE) inhibitory effect with an IC50 value of 1.04 ± 0.05 μM. Molecular formula studies revealed that hydrogen bonds formed between hAChE residues Glu202, Ser203, Ala204, Gly121, Gly122, Tyr337, and His447 and (±)-rhodotomentomonomer E played crucial roles in its observed activity. These findings indicated that the leaves of Rhodomyrtus tomentosa can supply a rich source of hAChE inhibitors. These inhibitors might potentially be utilized in the therapeutic strategy for Alzheimer's disease, offering promising candidates for further research and development.
Collapse
Affiliation(s)
- Ling-Yun Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; College of Pharmacy, Guilin Medical University, Guilin, 541199, PR China
| | - E-E Luo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Pan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Cheng-Qin Liang
- College of Pharmacy, Guilin Medical University, Guilin, 541199, PR China.
| | - Mu-Yuan Yu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| | - Xu-Jie Qin
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Huang RL, Tang W, Wang C, Yan C, Hu Y, Yang HX, Xiang HY, Huang XJ, Hu LJ, Ye WC, Song JG, Wang Y. Antiviral C-geranylated flavonoids from Artocarpus communis. PHYTOCHEMISTRY 2024; 225:114165. [PMID: 38815884 DOI: 10.1016/j.phytochem.2024.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Ten C-geranylated flavonoids, along with three known analogues, were isolated from the leaves of Artocarpus communis. The chemical structures of these compounds were unambiguously determined via comprehensive spectroscopic analysis, single-crystal X-ray diffraction experiments, and quantum chemical electronic circular dichroism calculations. Structurally, artocarones A-I (1-9) represent a group of unusual, highly modified C-geranylated flavonoids, in which the geranyl chain is cyclised with the ortho-hydroxy group of flavonoids to form various heterocyclic scaffolds. Notably, artocarones E and G-I (5 and 7-9) feature a 6H-benzo[c]chromene core that is hitherto undescribed in C-geranylated flavonoids. Artocarone J (10) is the first example of C-9-C-16 connected C-geranylated aurone. Meanwhile, the plausible biosynthetic pathways for these rare C-geranylated flavonoids were also proposed. Notably, compounds 1, 2, 4, 8, 11, and 12 exhibited promising in vitro inhibitory activities against respiratory syncytial virus and herpes simplex virus type 1.
Collapse
Affiliation(s)
- Rui-Li Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Chaoqun Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Cong Yan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hai-Xia Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hai-Yang Xiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Li-Jun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
4
|
Kimber MC, Lee DS. The Kornblum DeLaMare rearrangement in natural product synthesis: 25 years of innovation. Nat Prod Rep 2024; 41:813-833. [PMID: 38294038 DOI: 10.1039/d3np00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covering: 1998 up to the end of 2023Since its initial disclosure in 1951, the Kornblum DeLaMare rearrangement has proved an important synthetic transformation and has been widely adopted as a biomimetic step in natural product synthesis. Utilising the base catalysed decomposition of alkyl peroxides to yield a ketone and alcohol has found use in many syntheses as well as a key strategic step, including the unmasking of furans, as a biomimetic synthetic tool, and the use of the rearrangement to install oxygen enantioselectively. Since ca. 1998, its impact as a synthetic transformation has grown significantly, especially given the frequency of use in natural product syntheses, therefore this 25 year time period will be the focus of the review.
Collapse
Affiliation(s)
- Marc C Kimber
- Department of Chemistry, School of Science, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Darren S Lee
- Centre for Green Chemistry and Green Engineering at Yale, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
5
|
Peron G, López AM, Cabada-Aquirre P, Garay Buenrosto KD, Ostos Mendoza KC, Mahady GB, Seidel V, Sytar O, Koirala N, Gurung R, Acharya Z, Adhikari S, Sureda A, Martorell M, Sharifi-Rad J. Antiviral and antibacterial properties of phloroglucinols: a review on naturally occurring and (semi)synthetic derivatives with potential therapeutic interest. Crit Rev Biotechnol 2024; 44:319-336. [PMID: 36593064 DOI: 10.1080/07388551.2022.2160695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/03/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Phloroglucinol and derived compounds comprise a huge class of secondary metabolites widely distributed in plants and brown algae. A vast array of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer has been associated to this class of compounds. In this review, the available data on the antiviral and antibacterial capacity of phloroglucinols have been analyzed. Some of these compounds and derivatives show important antimicrobial properties in vitro. Phloroglucinols have been shown to be effective against viruses, such as human immunodeficiency virus (HIV), herpes or enterovirus, and preliminary data through docking analysis suggest that they can be effective against SARS-CoV-19. Also, some phloroglucinols derivatives have shown antibacterial effects against diverse bacteria strains, including Bacillus subtilis and Staphylococcus aureus, and (semi)synthetic development of novel compounds have led to phloroglucinols with a significantly increased biological activity. However, therapeutic use of these compounds is hindered by the absence of in vivo studies and scarcity of information on their mechanisms of action, and hence further research efforts are required. On the basis of this consideration, our work aims to gather data regarding the efficacy of natural-occurring and synthetic phloroglucinol derivatives as antiviral and antibacterial agents against human pathogens, which have been published during the last three decades. The recollection of results reported in this review represents a valuable source of updated information that will potentially help researchers in the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Brescia, Italy
| | - Alice M López
- Department of Chemistry and Nanotechnology, Tecnológico University de Monterrey, Monterrey, Mexico
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paulina Cabada-Aquirre
- Department of Chemistry and Nanotechnology, Tecnológico University de Monterrey, Monterrey, Mexico
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Karen D Garay Buenrosto
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
- School of Medicine and Health Sciences, Tecnológico University de Monterrey, Monterrey, México
| | - Keila C Ostos Mendoza
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
- School of Medicine and Health Sciences, Tecnológico University de Monterrey, Monterrey, México
| | - Gail B Mahady
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
| | - Roshani Gurung
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
- Department of Pharmacy, Shree Medical and Technical College, Purbanchal University, Chitwan, Nepal
| | - Zenisha Acharya
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
| | - Sundar Adhikari
- Department of Pharmacy, Shree Medical and Technical College, Purbanchal University, Chitwan, Nepal
- Department of Pharmacy, Fishtail Hospital and Research Center Pvt. Ltd, Pokhara, Nepal
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa, University of Balearic Islands-IUNICS, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico - UDT, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
6
|
Barras BJ, Ling T, Rivas F. Recent Advances in Chemistry and Antioxidant/Anticancer Biology of Monoterpene and Meroterpenoid Natural Product. Molecules 2024; 29:279. [PMID: 38202861 PMCID: PMC10780832 DOI: 10.3390/molecules29010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Monoterpenes and meroterpenes are two large classes of isoprene-based molecules produced by terrestrial plants and unicellular organisms as diverse secondary metabolites. The global rising incidence of cancer has led to a renewed interest in natural products. These monoterpenes and meroterpenes represent a novel source of molecular scaffolds that can serve as medicinal chemistry platforms for the development of potential preclinical leads. Furthermore, some of these natural products are either abundant, or their synthetic strategies are scalable as it will be indicated here, facilitating their derivatization to expand their scope in drug discovery. This review is a collection of representative updates (from 2016-2023) in biologically active monoterpene and meroterpenoid natural products and focuses on the recent findings of the pharmacological potential of these bioactive compounds as well as the newly developed synthetic strategies employed to access them. Particular emphasis will be placed on the anticancer and antioxidant potential of these compounds in order to raise knowledge for further investigations into the development of potential anti-cancer therapeutics. The mounting experimental evidence from various research groups across the globe regarding the use of these natural products at pre-clinical levels, renders them a fast-track research area worth of attention.
Collapse
Affiliation(s)
| | - Taotao Ling
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| |
Collapse
|
7
|
Song JG, Liu JX, Huang RL, Tang W, Huang XJ, Wang Y, Ye WC. Tautomeric cinnamoylphloroglucinol-monoterpene adducts from Cleistocalyx operculatus and their antiviral activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:38-51. [PMID: 38190257 DOI: 10.1080/10286020.2023.2288290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Guided by 1H NMR spectroscopic experiments using the characteristic enol proton signals as probes, three pairs of new tautomeric cinnamoylphloroglucinol-monoterpene adducts (1-3) were isolated from the buds of Cleistocalyx operculatus. Their structures with absolute configurations were established by spectroscopic analysis, modified Mosher's method, and quantum chemical electronic circular dichroism calculation. Compounds 1-3 represent a novel class of cinnamoylphloroglucinol-monoterpene adducts featuring an unusual C-4-C-1' linkage between 2,2,4-trimethyl-cinnamyl-β-triketone and modified linear monoterpenoid motifs. Notably, compounds 1-3 exhibited significant in vitro antiviral activity against respiratory syncytial virus (RSV).
Collapse
Affiliation(s)
- Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jia-Xin Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rui-Li Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Wang J, Song JG, Zhong DL, Duan ZZ, Peng ZJ, Tang W, Song QY, Huang XJ, Hu LJ, Wang Y, Ye WC. Biomimetic Synthesis of an Antiviral Cinnamoylphloroglucinol Collection from Cleistocalyx operculatus: A Synthetic Strategy Based on Biogenetic Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202312568. [PMID: 37848394 DOI: 10.1002/anie.202312568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
A synthetic strategy based on biogenetic building blocks for the collective and divergent biomimetic synthesis of cleistoperlones A-F, a cinnamoylphloroglucinol collection discovered from Cleistocalyx operculatus, has been developed. These syntheses proceeded successfully in only six to seven steps starting from commercially available 1,3,5-benzenetriol and involving oxidative activation of stable biogenetic building blocks as a crucial step. Key features of the syntheses include a unique Michael addition/ketalization/1,6-addition/enol-keto tautomerism cascade reaction for the construction of the dihydropyrano[3,2-d]xanthene tetracyclic core of cleistoperlones A and B, and a rare inverse-electron-demand hetero-Diels-Alder cycloaddition for the establishment of benzopyran ring in cleistoperlones D-F. Moreover, cleistoperlone A exhibited significant antiviral activity against acyclovir-resistant strains of herpes simplex virus type 1 (HSV-1/Blue and HSV-1/153).
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dong-Lin Zhong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhi-Zhang Duan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qiao-Yun Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Li-Jun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
9
|
Luo EE, Liu SN, Wang ZJ, Chen LY, Liang CQ, Yu MY, Qin XJ. Oligomeric phloroglucinols with hAChE inhibitory and antibacterial activities from tropic Rhodomyrtus tomentosa. Bioorg Chem 2023; 141:106836. [PMID: 37774436 DOI: 10.1016/j.bioorg.2023.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 10/01/2023]
Abstract
Alzheimer's diseases (AD) and other infectious diseases caused by drug-resistance bacteria have posed a serious threat to human lives and global health. With the aim to search for human acetylcholinesterase (hAChE) inhibitors and antibacterial agents from medicinal plants, 16 phloroglucinol oligomers, including two new phloroglucinol monomers (1a and 1b), four new phloroglucinol dimers (3a, 3b, 4b, and 5a), six new phloroglucinol trimers (6a, 6b, 7a, 7b, 8a, and 8b), and two naturally occurring phloroglucinol monomers (2a and 2b), along with two known congeners (4a and 5b), were purified from the leaves of tropic Rhodomyrtus tomentosa. The structures and absolute configurations of these new isolates were unequivocally established by comprehensive analyses of their spectroscopic data (NMR and HRESIMS), ECD calculation, and single crystal X-ray diffraction. Structurally, 3a/3b shared a rare C-5' formyl group, whereas 6a/6b possessed a unique C-7' aromatic ring. In addition, 7a/7b and 8a/8b were rare phloroglucinol trimers with a bis-furan and a C-6' hemiketal group. Pharmacologically, the mixture of 3a and 3b showed the most potent human acetylcholinesterase (hAChE) inhibitory activity with an IC50 value of 1.21 ± 0.16 μM. The molecular docking studies of 3a and 3b in the hAChE binding sites were performed, displaying good agreement with the in vitro inhibitory effects. In addition, the mixture of 3a and 3b displayed the most significant anti-MRSA (methicillin-resistant Staphylococcus aureus) with MIC and MBC values of both 0.50 μg/mL, and scanning electron microscope (SEM) studies revealed that they could destroy the biofilm structures of MRSA. The findings provide potential candidates for the further development of anti-AD and anti-bacterial agents.
Collapse
Affiliation(s)
- E-E Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Si-Na Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhao-Jie Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Ling-Yun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; College of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Cheng-Qin Liang
- College of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Mu-Yuan Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
10
|
Daus M, Hayton JB, Holland DC, Voravuthikunchai SP, Carroll AR, Chakthong S. Camaldulensals A-C, the First Meroterpenoids Possessing Two Spatially Separated Formyl Phloroglucinols Conjugated to a Terpene Core from the Leaves of Eucalyptus camaldulensis Dehnh. JOURNAL OF NATURAL PRODUCTS 2023; 86:1994-2005. [PMID: 37578330 DOI: 10.1021/acs.jnatprod.3c00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Three new bis-formyl phloroglucinol-meroterpenoids (1-3), three new euglobal type formyl phloroglucinol-meroterpenoids (4-6), and one new dimeric formyl phloroglucinol (7) were isolated from the leaves of Eucalyptus camaldulensis. Camaldulensal A (1) is the first bis-isovaleryl-formyl-phloroglucinol-sesquiterpenoid. It features a novel 6/6/10/3/6/6 fused ring system and contains six stereogenic centers. Camaldulensals B (2) and C (3) are the first bis-isovaleryl-formyl-phloroglucinols, each conjugated to a monoterpene. Formyl phloroglucinol compounds (FPCs) containing two spatially separated formyl phloroglucinols conjugated to a terpene core such as 1-3 have not been reported previously. The structures of these compounds were elucidated by spectroscopic methods and computational analysis. Camaldulensals B (2) and C (3) exhibited significant antibacterial activity against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Structure activity relationships are discussed in relation to previously reported antibacterial activities of other molecules from the FPC structure class.
Collapse
Affiliation(s)
- Mareena Daus
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Joshua B Hayton
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Darren C Holland
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Supayang P Voravuthikunchai
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Suda Chakthong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
11
|
Qiu F, Wang Z, Zhao D, Zeng L, Zhang C, Zhu H, Zhang J, Shao J. Direct Access to 3-Thioether-Substituted Dihydrofuro[2,3- b]benzofurans via Tandem Reactions of Sulfur Ylides and 2-Nitrobenzofurans. J Org Chem 2023. [PMID: 37463066 DOI: 10.1021/acs.joc.3c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The synthesis of 3-thioether-substituted dihydrofuro[2,3-b]benzofurans involving the [3 + 2] coupling of sulfur ylides with 2-nitrobenzofurans has been realized in moderate to good yields under mild conditions without any precious catalysts or additives. It is worth mentioning that the reutilization of the departed nitro-anion in the reaction process facilitates this new chemical transformation and presents a manner of high atom economy to provide products with a complex structure.
Collapse
Affiliation(s)
- Fengkai Qiu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zheng Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Dan Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
| | - Chong Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
12
|
Roy P, Krishna AV, Ramachary DB. Direct Organocatalytic Reductive Alkylation of Syncarpic Acid: Scope and Applications. J Org Chem 2022; 87:16026-16038. [PMID: 36367306 DOI: 10.1021/acs.joc.2c02164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biologically important 4-alkylsyncarpic acids, which resemble the core structure of many natural products, were synthesized in one-pot through the organocatalytic three-component reductive alkylation with excellent yields and C-selectivity. Synthetic applications of 4-alkylsyncarpic acids were demonstrated by converting into the functionally rich molecules through different reactions like Michael, retro-Michael, reduction, and oxidation reactions. In a continuation, formal total synthesis of (±)-triumphalone, (±)-isotriumphalone, and monomeric phloroglucinol derivatives was reported in a few steps starting from 4-alkylsyncarpic acids in overall very good yields. Further showcasing the importance of C-alkylated products, 4-benzylsyncarpic acid and its Michael adduct with methyl vinyl ketone were synthesized in a gram scale without compromising rate/yields.
Collapse
Affiliation(s)
- Pritam Roy
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Anugam V Krishna
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | |
Collapse
|
13
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2021. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:905-924. [PMID: 36111695 DOI: 10.1080/10286020.2022.2117169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The new natural products reported in 2021 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2021 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Phang YL, Liu S, Zheng C, Xu H. Recent advances in the synthesis of natural products containing the phloroglucinol motif. Nat Prod Rep 2022; 39:1766-1802. [PMID: 35762867 DOI: 10.1039/d1np00077b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: June 2009 to 2021Natural products containing a phloroglucinol motif include simple and oligomeric phloroglucinols, polycyclic polyprenylated acylphloroglucinols, phloroglucinol-terpenes, xanthones, flavonoids, and coumarins. These compounds represent a major class of secondary metabolites which exhibit a wide range of biological activities such as antimicrobial, anti-inflammatory, antioxidant and hypoglycaemic properties. A number of these compounds have been authorized for therapeutic use or are currently being studied in clinical trials. Their structural diversity and utility in both traditional and conventional medicine have made them popular synthetic targets over the years. In this review, we compile and summarise the recent synthetic approaches to the natural products bearing a phloroglucinol motif. Focus has been given on ingenious strategies to functionalize the phloroglucinol moiety at multiple positions. The isolation and bioactivities of the compounds are also provided.
Collapse
Affiliation(s)
- Yee Lin Phang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Song Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
15
|
Khan F, Tabassum N, Bamunuarachchi NI, Kim YM. Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4817-4838. [PMID: 35418233 DOI: 10.1021/acs.jafc.2c00532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phloroglucinol (PG) is a natural product isolated from plants, algae, and microorganisms. Aside from that, the number of PG derivatives has expanded due to the discovery of their potential biological roles. Aside from its diverse biological activities, PG and its derivatives have been widely utilized to treat microbial infections caused by bacteria, fungus, and viruses. The rapid emergence of antimicrobial-resistant microbial infections necessitates the chemical synthesis of numerous PG derivatives in order to meet the growing demand for drugs. This review focuses on the use of PG and its derivatives to control microbial infection and the underlying mechanism of action. Furthermore, as future perspectives, some of the various alternative strategies, such as the use of PG and its derivatives in conjugation, nanoformulation, antibiotic combination, and encapsulation, have been thoroughly discussed. This review will enable the researcher to investigate the possible antibacterial properties of PG and its derivatives, either free or in the form of various formulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
16
|
Deng LM, Tang W, Wang SQ, Song JG, Huang XJ, Zhu HY, Li YL, Ye WC, Hu LJ, Wang Y. Discovery and Biomimetic Synthesis of a Polycyclic Polymethylated Phloroglucinol Collection from Rhodomyrtus tomentosa. J Org Chem 2022; 87:4788-4800. [PMID: 35319897 DOI: 10.1021/acs.joc.2c00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inspired by a previously reported biomimetic synthesis study, four new naturally occurring phloroglucinol trimers 1-4 with unusual 6/5/5/6/6/6-fused hexacyclic ring systems, along with two known analogues (5 and 6) and two known biogenetically related dimers (10 and 11), were isolated from Rhodomyrtus tomentosa. Their structures and absolute configurations were unambiguously elucidated by spectroscopic analysis, X-ray diffraction, and electronic circular dichroism calculation. By mimicking two potentially alternative biosynthetic pathways, the first asymmetric syntheses of 1-4 and the racemic syntheses of 5 and 6 were achieved in only five to six steps without the need for protecting groups. Furthermore, phloroglucinol dimers 10 and 11 exhibited significant in vitro antiviral activity against the respiratory syncytial virus.
Collapse
Affiliation(s)
- Lu-Ming Deng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Shu-Qin Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jian-Guo Song
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao-Yue Zhu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yao-Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Li-Jun Hu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
17
|
Zhou T, Zheng A, Huo L, Li C, Tan H, Wang S, Chen H. Total syntheses of ericifolione and its analogues via a biomimetic inverse-electron-demand Diels-Alder reaction. Chem Commun (Camb) 2021; 58:270-273. [PMID: 34878459 DOI: 10.1039/d1cc06361h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Driven by bioinspiration and appreciation of the structure of ericifolione, a biomimetic tautomerization/intermolecular inverse-electron-demand hetero Diels-Alder reaction cascade sequence promoted by sodium acetate to rapidly construct sterically hindered dihydropyran scaffolds was established, which allowed the first straightforward biomimetic total syntheses of ericifolione and its analogues with high simplicity. Moreover, this methodology set the stage for the preparation of relevant natural products or derivatives.
Collapse
Affiliation(s)
- Tingting Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Anquan Zheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Changgeng Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Sasa Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Centre for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | - Huiyu Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| |
Collapse
|
18
|
Yu MY, Liu SN, Liu H, Meng QH, Qin XJ, Liu HY. Acylphloroglucinol trimers from Callistemon salignus seeds: Isolation, configurational assignment, hAChE inhibitory effects, and molecular docking studies. Bioorg Chem 2021; 117:105404. [PMID: 34749116 DOI: 10.1016/j.bioorg.2021.105404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) diagnoses are greatly increasing in frequency as the global population ages, highlighting an urgent need for new anti-AD strategies. With the aim to search for human acetylcholinesterase (hAChE) inhibitors from the species of Myrtaceae family, ten acylphloroglucinol trimers (APTs), including eight new APTs, callistemontrimers A-H (1a, 1b, 2a, 2b, 3a, 3b, 4b, and 5b), and two naturally occurring ones (4a and 5a), along with one reported triketone-acylphloroglucinol-monoterpene adduct (6), were obtained and structurally characterized from the hAChE inhibitory acetone extract of Callistemon salignus seeds. The structures and their absolute configurations for new APTs were unequivocally established via the detailed interpretation of extensive spectroscopic data (HRESIMS and NMR), ECD calculations, and single crystal X-ray diffraction, whereas the absolute configurations of known APTs were determined by further chiral separation, and calculated ECD calculations. The results of hAChE inhibitory assay revealed that an enantiomeric mixture of 2a/2b, 2a, and 2b are good hAChE inhibitors with IC50 values of 1.22 ± 0.23, 2.28 ± 0.19, and 4.96 ± 0.39 μM, respectively. Molecular docking was used to uncover the modes of interactions for bioactive compounds with the active site of hAChE. In addition, 2 and 6 displayed moderate neurite outgrowth-promoting effects with differentiation rates of 6.16% and 6.19% at a concentration of 1.0 μM, respectively.
Collapse
Affiliation(s)
- Mu-Yuan Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Si-Na Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qing-Hong Meng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
19
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2021. [PMID: 34350932 DOI: 10.1039/d1np90030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pyrasplorine A from Aspergillus versicolor.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
20
|
Deng LM, Hu LJ, Tang W, Liu JX, Huang XJ, Li YY, Li YL, Ye WC, Wang Y. A biomimetic synthesis-enabled stereochemical assignment of rhodotomentones A and B, two unusual caryophyllene-derived meroterpenoids from Rhodomyrtus tomentosa. Org Chem Front 2021. [DOI: 10.1039/d1qo00989c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rhodotomentones A and B (1 and 2), two unusual caryophyllene-derived meroterpenoids (CDMTs) featuring a rare 6/6/9/4/6/6 hexacyclic ring system, along with their biogenetically-related CDMTs 7 and 12–15, were isolated from Rhodomyrtus tomentosa.
Collapse
Affiliation(s)
- Lu-Ming Deng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Li-Jun Hu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jia-Xin Liu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yue-Yue Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yao-Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|