1
|
Bao C, Zhu X, Xu M, Hou M, Wang P, Qiu G. Sodium Poly(heptazine imide)-Enabled Oxytrifluoromethylation of Alkenes for the Synthesis of α-CF 3 Ketones. J Org Chem 2025; 90:4954-4958. [PMID: 40156573 DOI: 10.1021/acs.joc.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
This paper describes a NaPHI-catalyzed oxytrifluoromethylation of olefins under photoirradiation. The reaction is applicable for the synthesis of α-trifluoromethyl ketones, which could be structurally elaborated into an array of useful scaffolds. Mechanistic studies suggested that photoexcited NaPHI* could facilitate the formation of singlet 1O2 through an EnT process, thus enabling difunctionalization with trifluoromethyl radical and oxygen radical anion species.
Collapse
Affiliation(s)
- Chen Bao
- School of Urban Construction, Jiaxing Vocational and Technical College, Jiaxing 314000, China
| | - Xinyu Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Mengying Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Ming Hou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Peng Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
2
|
Jiang Y, Liao Y, Zhao Y, Pan F. Nickel/Photo-Cocatalyzed Cross-Coupling of Enol Silyl Ethers with α-Trifluoromethyl Bromides to Access β-CF 3-Substituted Ketones. Org Lett 2025. [PMID: 39900456 DOI: 10.1021/acs.orglett.4c04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Herein, we introduce a nickel-photocatalyzed cross-coupling reaction between enol silyl ethers and CF3-substituted alkyl bromides. This method provides a streamlined approach for synthesizing a wide array of structurally diverse β-CF3-substituted ketones, achieving favorable yields under mild conditions. The practicality of this methodology is further underscored by its successful application in the late-stage functionalization of various pharmaceuticals and natural products.
Collapse
Affiliation(s)
- Yan Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Youzhi Liao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yi Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
3
|
Bityukov OV, Skokova KV, Vil' VA, Nikishin GI, Terent'ev AO. Electrochemical Generation of Peroxy Radicals and Subsequent Peroxidation of 1,3-Dicarbonyls in an Undivided Cell. Org Lett 2024; 26:166-171. [PMID: 38153332 DOI: 10.1021/acs.orglett.3c03780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The generation of peroxy radicals from hydroperoxides with subsequent selective peroxidation of 1,3-dicarbonyls in an undivided electrochemical cell under constant current conditions is reported. The method provides a variety of peroxy-containing barbituric acids and 4-hydroxy-2(5H)-furanones with yields of up to 74%. Only the combination of anodic and cathodic processes provides efficient peroxidation by generating a set of alkoxy and peroxy radicals. NaNO3 acts as both an electrolyte and a redox mediator of radical reactions.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy, Moscow Region 143050, Russian Federation
| | - Ksenia V Skokova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy, Moscow Region 143050, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy, Moscow Region 143050, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospekt, Moscow, 119991, Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy, Moscow Region 143050, Russian Federation
| |
Collapse
|
4
|
Li Y, Wang L, Zhou S, He G, Zhou Y. Electrochemical oxidative cyclization of N-allylamides for the synthesis of CF 3-containing benzoxazines and oxazolines. RSC Adv 2024; 14:154-159. [PMID: 38173567 PMCID: PMC10758801 DOI: 10.1039/d3ra07282g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
The introduction of trifluoromethyl (-CF3) groups into compounds is a common synthetic strategy in organic chemistry. Commonly used methods for introducing trifluoromethyl groups are limited by harsh reaction conditions, low regioselectivity, or the need for excess reagents. In this study, a facile electrochemical oxidative and radical cascade cyclization of N-(2-vinylphenyl)amides for the synthesis of CF3-containing benzoxazines and oxazolines was obtained. This sustainable protocol features inexpensive and durable electrodes, a wide range of substrates, diverse functional group compatibility under transition-metal-free, external-oxidant-free, and additive-free conditions, and can be applied in an open environment.
Collapse
Affiliation(s)
- Yutian Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shengbin Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guoxue He
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Zhang P, Ma J, Liu X, Xue F, Zhang Y, Wang B, Jin W, Xia Y, Liu C. Electrochemical Synthesis of α-Thiocyanated/Methoxylated Ketones Using Enol Acetates. J Org Chem 2023; 88:16122-16131. [PMID: 37963225 DOI: 10.1021/acs.joc.3c01417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We have developed the synthesis of α-substituted ketone compounds with enol acetates in an electrochemical way. By using cheap NH4SCN and MeOH as the radical sources, a series of valuable α-thiocyanates/methoxy ketones were synthesized under mild electrolysis conditions in acceptable yields with diverse functional group compatibility. Additionally, the scale-up experiment and synthetic transformations reveal potential applications in organic synthesis.
Collapse
Affiliation(s)
- Peng Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Junwei Ma
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuan Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- College of Future Technology, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
6
|
Budnikov AS, Krylov IB, Lastovko AV, Dolotov RA, Shevchenko MI, Terent'ev AO. The diacetyliminoxyl radical in oxidative functionalization of alkenes. Org Biomol Chem 2023; 21:7758-7766. [PMID: 37698014 DOI: 10.1039/d3ob00925d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The intermolecular oxime radical addition to CC bonds was observed and studied for the first time. The diacetyliminoxyl radical was proposed as a model radical reagent for the study of oxime radical reactivity towards unsaturated substrates, which is important in the light of the active development of synthetic applications of oxime radicals. In the present work it was found that the diacetyliminoxyl radical reacts with vinylarenes and conjugated dienes to give radical addition products, whereas unconjugated alkenes can undergo radical addition or allylic hydrogen substitution by diacetyliminoxyl depending on the substrate structure. Remarkably, substituted alkenes give high yields of C-O coupling products despite the significant steric hindrance, whereas unsubstituted alkenes give lower yields of the C-O coupling products. The observed atypical C-O coupling yield dependence on the alkene structure was explained by the discovered ability of the diacetyliminoxyl radical to attack alkenes with the formation of a C-N bond instead of a C-O bond giving side products. This side process is not expected for sterically hindered alkenes due to lower steric availability of the N-atom in diacetyliminoxyl than that of the O-atom.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Andrey V Lastovko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Roman A Dolotov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
7
|
Xu J, Li Y, Zhu X, Lv S, Xu Y, Cheng T, Liu G, Liu R. Pyridinium-Masked Enol as a Precursor for Constructing Alpha-Fluoromethyl Ketones. Org Lett 2023; 25:6211-6216. [PMID: 37584477 DOI: 10.1021/acs.orglett.3c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
We present herein a pyridinium-masked enol as a versatile platform to produce ketones bearing tri-, di-, and monofluoromethyl in the presence of [Ir(dF(Me)ppy)]2(dtbbpy)]PF6 under blue light (455 nm) irradiation. By simply changing the F-source, α-trifluoromethyl ketones, α-difluoromethyl ketones, and α-monofluoromethyl ketones could be easily prepared in moderate to excellent yields in one step, making it a practical tool for the synthesis of fluorine-containing ketones. In addition, the pyridinium-masked enol could also be extended to the synthesis of sulfonyl ketones. The findings of the present protocol contribute to the arsenal of fluorine chemistry and might have potential applications in the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Jijun Xu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Yi Li
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Xuanyu Zhu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Shisong Lv
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Yiming Xu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Tanyu Cheng
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Guohua Liu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| | - Rui Liu
- Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 201418, China
| |
Collapse
|
8
|
Wu F, Guo Y, Ren Z, Chen Z, Liu X, Wang C, Rong L. Electrochemical Radical Reactions of Enol Acetates and Free Alcohols Directly Access to α-Alkoxylated Carbonyl Compounds. J Org Chem 2023. [PMID: 37223997 DOI: 10.1021/acs.joc.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The efficient intermolecular alkoxylation reactions of various enol acetates and different alcohols are developed in the electrochemical process for the first time. Enol acetates derived from either aromatic, alkyl, or alicyclic ketones, and abundant free alcohols directly used in this synthetic strategy, make this transformation very valuable in synthesis and application in the future.
Collapse
Affiliation(s)
- Fan Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Yu Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Zihao Ren
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Zixuan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Xiaoqin Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 Shandong, P. R. China
| | - Liangce Rong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| |
Collapse
|
9
|
Vil’ VA, Grishin SS, Terent’ev AO. Electrochemically Induced Synthesis of Imidazoles from Vinyl Azides and Benzyl Amines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227721. [PMID: 36431821 PMCID: PMC9692461 DOI: 10.3390/molecules27227721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
An electrochemically induced synthesis of imidazoles from vinyl azides and benzyl amines was developed. A wide range of imidazoles were obtained, with yields of 30 to 64%. The discovered transformation is a multistep process whose main steps include the generation of electrophilic iodine species, 2H-azirine formation from the vinyl azide, followed by its reactions with benzyl amine and with imine generated from benzyl amine. The cyclization and aromatization of the obtained intermediate lead to the target imidazole. The synthesis proceeds under constant current conditions in an undivided cell. Despite possible cathodic reduction of various unsaturated intermediates with C=N bonds, the efficient electrochemically induced synthesis of imidazoles was carried out.
Collapse
|
10
|
Li YL, Shi Z, Shen T, Ye KY. Electrochemical vicinal oxyazidation of α-arylvinyl acetates. Beilstein J Org Chem 2022; 18:1026-1031. [PMID: 36051561 PMCID: PMC9379640 DOI: 10.3762/bjoc.18.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
α-Azidoketones are valuable and versatile building blocks in the synthesis of various bioactive small molecules. Herein, we describe an environmentally friendly and efficient electrochemical vicinal oxyazidation protocol of α-arylvinyl acetates to afford diverse α-azidoketones in good yields without the use of a stoichiometric amount of chemical oxidant. A range of functionality is shown to be compatible with this transformation, and further applications are demonstrated.
Collapse
Affiliation(s)
- Yi-Lun Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tao Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
11
|
Bityukov OV, Kirillov AS, Serdyuchenko PY, Kuznetsova MA, Demidova VN, Vil' VA, Terent'ev AO. Electrochemical thiocyanation of barbituric acids. Org Biomol Chem 2022; 20:3629-3636. [PMID: 35420113 DOI: 10.1039/d2ob00343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical thiocyanation of barbituric acids with NH4SCN was disclosed in an undivided cell under constant current conditions. The electrosynthesis is the most efficient at a record high current density (janode ≈50-70 mA cm-2). NH4SCN has a dual role as the source of the SCN group and as the electrolyte. Electrochemical thiocyanation of barbituric acids starts with the generation of (SCN)2 from the thiocyanate anion. The addition of thiocyanogen to the double bond of the enol tautomer of barbituric acid gives thiocyanated barbituric acid. A variety of thiocyanated barbituric acids bearing different functional groups were obtained in 18-95% yields and were shown to exhibit promising antifungal activity.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Andrey S Kirillov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Pavel Yu Serdyuchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. .,D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Maria A Kuznetsova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Valentina N Demidova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
12
|
de Souza AAN, Bartolomeu ADA, Brocksom TJ, Noël T, de Oliveira KT. Direct Synthesis of α-Sulfenylated Ketones under Electrochemical Conditions. J Org Chem 2022; 87:5856-5865. [PMID: 35417160 DOI: 10.1021/acs.joc.2c00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the electrochemical sulfenylation reaction in both batch and continuous flow regimes, involving thiophenols/thiols and enol-acetates to yield α-sulfenylated ketones, without using additional oxidants or catalysts. Studies with different electrolytes were also performed, revealing that quaternary ammonium salts are the best mediators for this reaction. Notably, during the study of the reaction scope, a Boc-cysteine proved to be extremely tolerant to our protocol, thus increasing its relevance. The methodology also proved to be scalable in both batch and continuous flow conditions, opening up possibilities for further studies since these relevant functional groups are important moieties in organic synthesis.
Collapse
Affiliation(s)
- Aline A N de Souza
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Aloisio de A Bartolomeu
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy J Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UVA), Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Kleber T de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
13
|
Vil' V, Grishin S, Baberkina E, Alekseenko A, Glinushkin A, Kovalenko A, Terent'ev A. Electrochemical Synthesis of Tetrahydroquinolines from Imines and Cyclic Ethers via Oxidation/Aza‐Diels‐Alder Cycloaddition. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vera Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| | - Sergei Grishin
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | - Elena Baberkina
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Anna Alekseenko
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | | | - Alexey Kovalenko
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Alexander Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| |
Collapse
|
14
|
Gui QW, Teng F, Yang H, Xun C, Huang WJ, Lu ZQ, Zhu MX, Ouyang WT, He WM. Visible-Light Photosynthesis of CHF 2 /CClF 2 /CBrF 2 -Substituted Ring-fused Quinazolinones in Dimethyl Carbonate. Chem Asian J 2022; 17:e202101139. [PMID: 34837338 DOI: 10.1002/asia.202101139] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Indexed: 12/13/2022]
Abstract
With eco-friendly and sustainable CO2 -derived dimethyl carbonate as the sole solvent, the visible-light-induced cascade radical reactions have been established as a green and efficient tool for constructing various CHF2 /CClF2 /CBrF2 -substituted ring-fused quinazolinones.
Collapse
Affiliation(s)
- Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Fan Teng
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Hao Yang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Changping Xun
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Wen-Jie Huang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zi-Qin Lu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Meng-Xue Zhu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
15
|
Gu Q, Cheng Z, Zeng X. Electrochemical Oxidative Trifluoromethylation of α-Oxoketene Ketene Dithioacetals with CF 3SO 2Na. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Wang Q, Shi Y, Huang X, Wang Y, Jiao J, Tang Y, Li J, Xu S, Li Y. Ru(II)-Catalyzed Difunctional Pyridyloxy-Directed Regio- and Stereospecific Addition of Carboxylic Acids to Internal Alkynes. Org Lett 2021; 24:379-384. [PMID: 34935395 DOI: 10.1021/acs.orglett.1c04052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient Ru(II)-catalyzed regio- and stereospecific hydro-oxycarbonylation of unsymmetrical internal alkynes bearing a difunctional 2-pyridyloxy directing group with carboxylic acids has been developed, which provides allylic (Z)-enol esters in good to excellent yields with a broad substrate scope under mild conditions. The difunctional directing group can be diversely derivatized, particularly undergoing allylic substitution with various nucleophiles to afford β-functionalized (Z)-enol esters without directing groups.
Collapse
Affiliation(s)
- Qin Wang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Shi
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongzhuang Wang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
17
|
Kaboudin B, Ghashghaee M, Bigdeli A, Farkhondeh A, Eskandari M, Esfandiari H. Recent Advances on the Application of Langlois’ Reagent in Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202103867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mojtaba Ghashghaee
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Akram Bigdeli
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Amir Farkhondeh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mahboobe Eskandari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Hesam Esfandiari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| |
Collapse
|