1
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
2
|
Liu G, Yang X, Gu P, Wang M, Zhang X, Dong XQ. Challenging Task of Ni-Catalyzed Highly Regio-/Enantioselective Semihydrogenation of Racemic Tetrasubstituted Allenes via a Kinetic Resolution Process. J Am Chem Soc 2024; 146:7419-7430. [PMID: 38447583 DOI: 10.1021/jacs.3c12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The first earth-abundant transition metal Ni-catalyzed highly regio- and enantioselective semihydrogenation of racemic tetrasubstituted allenes via a kinetic resolution process as a challenging task was well established. This protocol furnishes expedient access to a diversity of structurally important enantioenriched tetrasubstituted allenes and chiral allylic molecules with high regio-, enantio-, and Z/E-selectivity. Remarkably, this semihydrogenation proceeded with one carbon-carbon double bond of allenes, which was regioselective complementary to the Rh-catalyzed asymmetric version. Deuterium labeling experiments and density functional theory (DFT) calculations were carried out to reveal the reasonable reaction mechanism and explain the regio-/stereoselectivity.
Collapse
Affiliation(s)
- Gang Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xuanliang Yang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Pei Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Xumu Zhang
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518000, Guangdong, P. R. China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
3
|
Chicas-Baños DF, López-Rivas M, González-Bravo FJ, Sartillo-Piscil F, Frontana-Uribe BA. Access to carbonyl compounds via the electroreduction of N-benzyloxyphthalimides: Mechanism confirmation and preparative applications. Heliyon 2024; 10:e23808. [PMID: 38226225 PMCID: PMC10788431 DOI: 10.1016/j.heliyon.2023.e23808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
A method to access carbonyl compounds using reductive conditions was evaluated via electrochemical reduction of their corresponding N-benzyloxyphthalimide derivatives (NBOPIs). The mechanism of this originally reported electrochemical reaction was proposed based on DFT calculation and is experimentally confirmed herein, contrasting simulated and experimental cyclic voltammetry data. The reaction scope studied in a preparative scale and using redox sensitive functional groups showed good selectivity and tolerance toward oxidation under the reaction conditions with a moderate to good yield (50-71%). Nevertheless, some restrictions with reducible functional groups, like benzyl-brominated and nitro-aromatic derivatives, were observed. The present approach can be considered a self-sustainable electrochemical catalysis for the synthesis of aromatic carbonylic compounds passing through anion radical intermediates produced by a cathodic reaction.
Collapse
Affiliation(s)
- Diego Francisco Chicas-Baños
- Universidad de El Salvador (UES), Facultad de Ciencias Naturales y Matemática, Escuela de Química, Final 25 Av. Nte, 1101, San Salvador, El Salvador
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Mariely López-Rivas
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| | - Felipe J. González-Bravo
- Departamento de Química, Centro de Investigación y Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, Mexico
| | - Bernardo Antonio Frontana-Uribe
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, 04510, Mexico
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| |
Collapse
|
4
|
Zhang H, He J, Xu W, Yang L, Zhang X, Wang H, Lang M, Wang J, Peng S. Unexpected Copper-Catalyzed Cascade Reaction of 1,6-Enynes with Sulfoxonium Ylides. Org Lett 2022; 24:7095-7100. [PMID: 36154184 DOI: 10.1021/acs.orglett.2c02620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented copper-catalyzed cascade reaction of 1,6-enynes with sulfoxonium ylides is reported, providing a series of structurally intriguing 2,3-disubstituted indolines bearing a conjugated dienone functionality at the 3-position in moderate to excellent yields with good chemo-, regio-, and diastereoselectivities under mild reaction conditions. Importantly, sulfoxonium-ylide-derived copper-carbene herein exhibits quite different reactivity from that of diazo copper-carbene. A rational mechanism, an initial ammonium ylide rather than allene formation, is proposed.
Collapse
Affiliation(s)
- Hong Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Jieyin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Wendi Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Liangliang Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Xue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Haiyang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Jian Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China.,School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
5
|
Wu H, Qu B, Nguyen T, Lorenz JC, Buono F, Haddad N. Recent Advances in Non-Precious Metal Catalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Jon C. Lorenz
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
6
|
Dong K, Liu M, Xu X. Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates. Molecules 2022; 27:3088. [PMID: 35630567 PMCID: PMC9144650 DOI: 10.3390/molecules27103088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
As one of the abundant and inexpensive metals on the earth, copper has demonstrated broad applications in synthetic chemistry and catalysis. Among these copper-catalyzed advances, copper carbenes are versatile and reactive intermediates that can mediate a variety of transformations, which have attracted much attention in the past decades. The present review summarizes two different reaction models that take place between a copper carbene intermediate and alkyne species, including the cross-coupling reaction of copper carbene intermediate with terminal alkyne, and the addition of copper carbene intermediate onto the C-C triple bond. This article will cover the profile from 2010 to 2021 by placing emphasis on the detailed catalytic models and highlighting the synthetic applications offered by these practical and mild methods.
Collapse
Affiliation(s)
- Kuiyong Dong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengting Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| |
Collapse
|
7
|
Zhang FH, Guo X, Zeng X, Wang Z. Catalytic Enantioconvergent Allenylation of Aldehydes with Propargyl Halides. Angew Chem Int Ed Engl 2022; 61:e202117114. [PMID: 35029018 DOI: 10.1002/anie.202117114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/09/2022]
Abstract
α-Allenol is a versatile synthon in organic synthesis. The catalytic asymmetric synthesis of α-allenols from readily available starting materials remains a prominent challenge, especially when simultaneous control over axial and central chirality is required. Herein, we describe the Cr-catalyzed enantioconvergent allenylation of aldehydes with racemic propargyl halides to rapidly access a wide range of chiral α-allenols with adjacent axial and central chiralities. This method features excellent regio-, diastereo- and enantioselectivity control with broad substrate scope, and provides facile access to all four stereoisomers when allied with a Mitsunobu reaction. Preliminary mechanistic studies support radical-based reaction pathways. The synthetic utility is demonstrated by the application in late-stage functionalization and the formal total synthesis of (+)-varitriol.
Collapse
Affiliation(s)
- Feng-Hua Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Xiaochong Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Xianrong Zeng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
8
|
Zhang F, Guo X, Zeng X, Wang Z. Catalytic Enantioconvergent Allenylation of Aldehydes with Propargyl Halides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng‐Hua Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study Hangzhou 310024, Zhejiang Province China
| | - Xiaochong Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study Hangzhou 310024, Zhejiang Province China
| | - Xianrong Zeng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study Hangzhou 310024, Zhejiang Province China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
9
|
Xiao W, Wu J. Recent advances in the metal-catalyzed asymmetric synthesis of chiral allenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00994c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent advances in the metal-catalyzed asymmetric synthesis of chiral allenes are summarized. This review is categorized based on the starting material, including alkynes, racemic allenes, and conjugated dienes.
Collapse
Affiliation(s)
- Wei Xiao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|