1
|
Gaurav A, Mandal PK. Synthesis of aryl thioglycosides by metal-free arylation of glycosyl thiols with diaryliodonium salts under basic conditions. Carbohydr Res 2025; 552:109437. [PMID: 40014945 DOI: 10.1016/j.carres.2025.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Herein, we demonstrate the application of unsymmetrical iodonium salts towards S-arylation of glycosyl thiols under metal-free conditions, affording a various stereoretentive thioarylglycosides in moderate to good yields. The application of an inorganic base Cs2CO3 enables the C-S bond formation under mild and experimentally simple conditions at room temperature. The proper choice of auxiliary of the unsymmetrical iodonium salt enables the access to diverse functionalized aryl moieties including biphenyl groups and its incorporation into thioarylglycosides.
Collapse
Affiliation(s)
- Anand Gaurav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Chai YX, Yang YF, Zhang FY, Zhao JY, Wang YT, Chen Y, Sun YY, Li JH, Zhu YP. Palladium/norbornene cooperative catalysis triple functionalization: carbamoylation/double-annulation of (hetero)aryl iodides. Chem Commun (Camb) 2025; 61:7133-7136. [PMID: 40243944 DOI: 10.1039/d5cc00294j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A novel Pd/NBE-catalyzed intermolecular dehydrobicyclization of heteroaryl iodides for the synthesis of polycyclic nitrogen-containing heterocycles is reported. In this work, the N-protected aryl carbamoyl chloride serves as a source of acylation. The products resulting from the direct C-H functionalization of heteroaryl iodides are smoothly obtained without catalyst poisoning by heteroatoms.
Collapse
Affiliation(s)
- Yi-Xin Chai
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Yu-Fan Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Feng-Yu Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Ji-Yan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Ya-Ting Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Yanmei Chen
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yuan-Yuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China.
| |
Collapse
|
3
|
Martínez-Pascual R, Valera-Zaragoza M, Fernández-Bolaños JG, López Ó. Exploring the Chemistry and Applications of Thio-, Seleno-, and Tellurosugars. Molecules 2025; 30:2053. [PMID: 40363858 PMCID: PMC12073459 DOI: 10.3390/molecules30092053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Given the crucial roles of carbohydrates in energy supply, biochemical processes, signaling events and the pathogenesis of several diseases, the development of carbohydrate analogues, called glycomimetics, is a key research area in Glycobiology, Pharmacology, and Medicinal Chemistry. Among the many structural transformations explored, the replacement of endo- and exocyclic oxygen atoms by carbon (carbasugars) or heteroatoms, such as nitrogen (aza- and iminosugars), phosphorous (phosphasugars), sulfur (thiosugars), selenium (selenosugars) or tellurium (tellurosugars) have garnered significant attention. These isosteric substitutions can modulate the carbohydrate bioavailability, stability, and bioactivity, while introducing new properties, such as redox activity, interactions with pathological lectins and enzymes, or cytotoxic effects. In this manuscript we have focused on three major families of glycomimetics: thio-, seleno-, and tellurosugars. We provide a comprehensive review of the most relevant synthetic pathways leading to substitutions primarily at the endocyclic and glycosidic positions. The scope includes metal-catalyzed reactions, organocatalysis, electro- and photochemical transformations, free-radical processes, and automated syntheses. Additionally, mechanistic insights, stereoselectivity, and biological properties are also discussed. The structural diversity and promising bioactivities of these glycomimetics underscore their significance in this research area.
Collapse
Affiliation(s)
- Roxana Martínez-Pascual
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec 68301, Oaxaca, Mexico; (R.M.-P.); (M.V.-Z.)
| | - Mario Valera-Zaragoza
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec 68301, Oaxaca, Mexico; (R.M.-P.); (M.V.-Z.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain;
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain;
| |
Collapse
|
4
|
Wang MX, Li YM, Zeng W, Zhang MY, Yu WZ, Zheng ZH, Sun YY, Li JH, Zhu YP. Palladium/Norbornene Cooperative Catalysis 2-Fold C-H/C-X Coupling: Construction of Polycyclic Aromatic Hydrocarbons from Brominated Benzimidazoles. Org Lett 2025; 27:2647-2652. [PMID: 40059672 DOI: 10.1021/acs.orglett.5c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A palladium/norbornene (NBE)-catalyzed 2-fold C-H/C-X coupling reaction of aryl iodides is reported. Bromine-substituted benzimidazoles were chosen as electrophilic and termination reagents, and the versatile polycyclic aromatic hydrocarbon products were successfully obtained. The strategy overcomes the challenge of catalyst poisoning by heterocyclic substrates. In addition, the imidazole moiety in the product is endowed with a localization role, thus enabling the compounds to be applied in a wider synthetic scenario, and the fluorescence persisted. Furthermore, the bioactivity evaluation has identified three promising leading compounds 3b, 4e, and 4i.
Collapse
Affiliation(s)
- Ming-Xuan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Yi-Ming Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Wei Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei, Wuhan 430071, P. R. China
| | - Ming-Yao Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Wen-Zhou Yu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Ze-Hui Zheng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Yuan-Yuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| |
Collapse
|
5
|
Zhang X, Chen XX, Li ZH, Lin GQ, He ZT. Stereoselective P(III)-Glycosylation for the Preparation of Phosphinated Sugars. Angew Chem Int Ed Engl 2025; 64:e202420355. [PMID: 39639578 DOI: 10.1002/anie.202420355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Most of the reported work focus on the development of O-, N-, C- and S-glycosylation methods. However, no study explores P(III)-glycosylation reaction. Herein we describe a convenient protocol to realize P(III)-glycosylation process. A simple β-phosphino ester is adopted as P(III)-transfer reagent for this new type of glycosylation via a nucleophilic substitution and release strategy. Diverse phosphine units are introduced to the anomeric center of various sugars efficiently and with excellent stereoselectivity. The value of this method is showcased by the prepared P(III)-sugars as novel linkers in bioactive molecule conjugation, new chiral ligands in metal-catalyzed asymmetric allylic substitutions and organocatalysts. Preliminary mechanistic studies corroborated the designed P(III)-transfer process.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xian-Xiao Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zi-Han Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guo-Qiang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
6
|
Azeem Z, Dubey S, Mandal PK. Pd-Catalyzed Synthesis of 1-(Hetero)aryl Thioglycosides: Strategy for the Trapping of an Acyl Group of Glycosylthioesters by Coupling of Bis-Electrophilic-Nucleophilic Partners. J Org Chem 2024; 89:15777-15792. [PMID: 39405505 DOI: 10.1021/acs.joc.4c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Herein, we describe a stereoretentive palladium-catalyzed cross-coupling between the in situ-generated glycosyl thiolate anion and diverse (hetero)aryl iodides at room temperature for creating the library of (hetero)aryl thioglycosides. The key to success is the judicious pairing of bis-electrophilic-nucleophilic partners with a variety of thioesters in an atom-economical way in which both the glycosyl thiolate anion and the acylium cation are incorporated into the final analogue. The advantage of this method is the acyl transfer on various nucleophilic partners, including a hydroxyl, a primary or secondary amine, an amino acid, and the biologically active hSGLT1 inhibitor.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Ni Q, Liu X, Song Z, Ma Y. Nickel-Catalyzed Cross-Coupling of Aziridines with Thioesters toward Atom-Economic Synthesis of β-Sulfanyl Amides. Org Lett 2024; 26:8457-8462. [PMID: 39331476 DOI: 10.1021/acs.orglett.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Thioesters have been recognized as a class of powerful bifunctional reagents, namely, great donors of acyl and sulfide moieties. However, such application in value-added synthesis is still very limited to date. Herein, a nickel-catalyzed cross-coupling reaction system of aziridines with thioesters was developed under redox-neutral and mild conditions. This catalytic method provides an atom-economic route for the synthesis of diverse β-sulfanyl amide derivatives with wide substrate scope (43 examples), good functional group tolerance, and regioselectivity.
Collapse
Affiliation(s)
- Qian Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Xianmao Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Zhiyong Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| |
Collapse
|
8
|
Jiao Y, Shi X, Ju L, Yu S. Photoredox-Catalyzed Synthesis of C-Benzoselenazolyl/Benzothiazolyl Glycosides from 2-Isocyanoaryl Selenoethers/Thioethers and Glycosyl Bromides. Org Lett 2024; 26:390-395. [PMID: 38165656 DOI: 10.1021/acs.orglett.3c04059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Molecules containing heteroatoms, such as Se and S, play an indispensable role in the discovery and design of pharmaceuticals, whereas Se has been less studied. Here, we described a photoredox strategy to synthesize C-benzoselenazolyl (Bs) glycosides from 2-isocyanoaryl selenoethers and glycosyl bromides. This reaction was carried out under mild conditions with high efficiency. C-Benzothiazolyl (Bt) glycosides could also be synthesized from 2-isocyanoaryl thioethers using this strategy. This method can access novel seleno/thiosugars, which will benefit Se/S-containing drug discovery.
Collapse
Affiliation(s)
- Yi Jiao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoran Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Ju
- Sunichem Company, Limited, Dandong 118003, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Xing F, Lin T, Ye Y, Wang YE, Cao X, Gao X, Zhang D, Kong L, Zhu X, Xiong D, Mao J. Nickel/photoredox-catalyzed enantioselective arylation of α-chloro thioesters. Chem Commun (Camb) 2023; 59:13355-13358. [PMID: 37873615 DOI: 10.1039/d3cc04067d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The first dual nickel/photoredox-catalyzed enantioselective reductive cross-coupling of racemic α-chloro thioesters with aryl iodides has been developed. This strategy avoids the need for organometallic reagents or stoichiometric metal reductants. This reaction could tolerate a wide range of substrate scope with excellent reactivity and high enantioselectivities (up to 91% ee) to access a variety of chiral α-aryl thioesters. The synthetic utility of the corresponding α-aryl thioesters is demonstrated. Furthermore, we explored the mechanism of such an enantioselective radical cross-coupling process.
Collapse
Affiliation(s)
- Fei Xing
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Tingzhi Lin
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Yu Ye
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Xianzhong Cao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Xueying Gao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Dongzhao Zhang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Lingfeng Kong
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Xiyou Zhu
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| |
Collapse
|
10
|
Bielski R, Mencer D. New syntheses of thiosaccharides utilizing substitution reactions. Carbohydr Res 2023; 532:108915. [PMID: 37597327 DOI: 10.1016/j.carres.2023.108915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
Novel synthetic methods published since 2005 affording carbohydrates containing sulfur atom(s) are reviewed. The review is divided to subchapters based on the position of sulfur atom(s) in the sugar molecule. Only those methods that take advantage of substitution are discussed.
Collapse
Affiliation(s)
- Roman Bielski
- Department of Pharmaceutical Sciences, Wilkes University, Wilkes-Barre, PA, 18766, United States; Chemventive, LLC Chadds Ford, PA, 19317, United States.
| | - Donald Mencer
- Department of Chemistry & Biochemistry, Wilkes University, Wilkes-Barre, PA, 18766, United States.
| |
Collapse
|
11
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
12
|
Sun Z, Yan W, Xie L, Liu W, Xu C, Chen FE. A Robust Copper-Catalyzed Cross-Coupling of Glycosyl Thiosulfonate and Boronic Acids Enables the Construction of Thioglycosides. Org Lett 2023; 25:5714-5718. [PMID: 37530179 DOI: 10.1021/acs.orglett.3c01798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
An efficient and stereoretentive copper-catalyzed cross-coupling of glycosyl thiosulfonate and boronic acid for the construction of thioglycosides is described. The good functional group compatibility of this method allows the preparation of many bioactive aryl/alkenyl thioglycosides, including the hSGLT1 inhibitor.
Collapse
Affiliation(s)
- Zuyao Sun
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Weitao Yan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lihuang Xie
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenchao Liu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Kumar Pradhan A, Kumar Behera P, Choudhury P, Behera P, Swain A, Bag P, Pany D, Rout L. t
‐BuOH Solvent for CuSeO
3
Catalyzed
Csp
2
‐Se
Cross‐coupling of Diaryldiselenide with Arylhalides and Boronic acids. ChemistrySelect 2023. [DOI: 10.1002/slct.202300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Amit Kumar Pradhan
- Department of Chemistry Berhampur University Bhanjabihar 760007 Ganjam Odisha India
| | | | - Prabhupada Choudhury
- Department of Chemistry Berhampur University Bhanjabihar 760007 Ganjam Odisha India
| | - Papita Behera
- Department of Chemistry Berhampur University Bhanjabihar 760007 Ganjam Odisha India
| | - Amlan Swain
- Department of Chemistry Berhampur University Bhanjabihar 760007 Ganjam Odisha India
| | - Priyanka Bag
- Department of Chemistry Berhampur University Bhanjabihar 760007 Ganjam Odisha India
| | - Debiprasad Pany
- Department of Chemistry Berhampur University Bhanjabihar 760007 Ganjam Odisha India
| | - Laxmidhar Rout
- Department of Chemistry Berhampur University Bhanjabihar 760007 Ganjam Odisha India
| |
Collapse
|
14
|
Azeem Z, Mandal PK. Atom-Economic Synthesis of Unsymmetrical gem-Diarylmethylthio/Seleno Glycosides via Base Mediated C(O)-S/Se Bond Cleavage and Acyl Transfer Approach of Glycosylthio/Selenoacetates. J Org Chem 2023; 88:1695-1712. [PMID: 36633914 DOI: 10.1021/acs.joc.2c02704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we invented the Cs2CO3-mediated atom economic method that streamlines the scission of the C(O)-S/Se bond involving the in situ generation of an anomeric thiolate/selenolate anion, which reacted with p-QMs to yield novel unsymmetrical gem-diarylmethylthio/seleno glycosides while retaining the anomeric stereochemistry. Notably, the key features of this protocol involve unprecedented long-range acyl transfer (from S/Se to O), thus affording acylation of the final product which is not yet reported by classical methods. This straightforward protocol offers a mild, short reaction time, synthetically simple approach, and compatibility with 8 types of sugar along with phenylthio/benzylseleno esters.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
15
|
Recent progress on Catellani reaction. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Du G, Zhu P, Wang J, Li X, Zhang D, Wang C, Sun F. Modular Synthesis of
ortho
‐Thiolated Aryl Esters Enabled with Thiocarbonate through Catellani Strategy. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Guopeng Du
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Pingliang Zhu
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Jing Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Dao‐Peng Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Chuan‐Zeng Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Feng‐Gang Sun
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| |
Collapse
|
17
|
LI L, Mahri L, de Robichon M, Fatthalla M, Ferry A, MESSAOUDI S. Directed Dehydrogenative Copper‐Catalyzed C‐H Thiolation in Pseudo‐Anomeric Position of Glycals using Thiol and Thiosugar Partners. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Zhu M, Ghouilem J, Messaoudi S. Visible-Light-Mediated Stadler-Ziegler Arylation of Thiosugars with Anilines. ACS ORGANIC & INORGANIC AU 2022; 2:351-358. [PMID: 36855591 PMCID: PMC9955296 DOI: 10.1021/acsorginorgau.2c00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report a one-pot Stadler-Ziegler reaction toward the synthesis of 1-thioglycosides in good yield from commercially available anilines and (un)protected 1-glycosyl thiols. This simple and mild approach employs the photoredox catalyst [Ru(bpy)3](PF6)2 under visible light.
Collapse
|
19
|
Li S, Wang Y, Zhong L, Wang S, Liu Z, Dai Y, He Y, Feng Z. Boron-Promoted Umpolung Reaction of Sulfonyl Chlorides for the Stereospecific Synthesis of Thioglycosides via Reductive Deoxygenation Coupling Reactions. Org Lett 2022; 24:2463-2468. [PMID: 35333062 DOI: 10.1021/acs.orglett.2c00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Glycosides have broad biological activities and serve as stable mimics of natural O-glycoside counterparts and thus are of great therapeutic potential. Herein we disclose an efficient method for the stereospecific synthesis of 1-thioglycosides via a boron-promoted reductive deoxygenation coupling reaction from readily accessible sulfonyl chlorides and glycosyl bromides. Our protocol features mild conditions and excellent functional group tolerance and stereoselectivity. The translational potential of this metal-free approach is demonstrated by the late-stage glycodiversification of natural products and drug molecules.
Collapse
Affiliation(s)
- Siyu Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yujuan Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Lei Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Siyu Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhengli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
20
|
Wu Q, Zhao YH, Lu-Lu C, Li HY, Li HX. Metal-free photocleavage of C(non-acyl)-S bond of thioesters for regioselective pyridylthioesterification of styrenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of thioesters via transition-metal-mediated C(acyl)−S bond cleavage is an emerging method to forge C-C and C-heteroatom bonds. Herein, we report the first activation of stronger C(non-acyl)–S bond of thioesters...
Collapse
|
21
|
Zhang J, Xie M, Wu J, Li Y, Sun P, Zhang Y. Access to Functionalized Pyrrolophenanthridine via an ortho C-H Amination/Interannular C-H Arylation Cascade of N-Arylpyrroles. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|