1
|
Luo Q, Xie ZB, Jian C, Yang KR, Huang K, Yan SJ. Fe-Catalyzed Radical Trifluoromethylation and Cyclization of Ortho-Vinyl Enaminones with 1-(Trifluoromethyl)-1,3-benzo-[ d][1,2]iodaoxol-3(1 H)-one to Construct Functionalized Quinolines. J Org Chem 2025. [PMID: 40387627 DOI: 10.1021/acs.joc.5c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Herein, we present a protocol for the construction of functionalized quinolines, i.e., 3-acyl-4-(2,2,2-trifluoro-ethyl)quinolines (ATFQLs) 4, from ortho-vinyl enaminones and 1-(trifluoromethyl)-1,3-benzo-[d][1,2]-iodaoxol-3(1H)-one, which was catalyzed by FeCp2 and promoted by FeCl3 (Lewis acid) additives in solvents (i.e., acetonitrile and toluene). This strategy first utilized the FeCp2-catalyzed functionalization of alkenes with trifluoromethyl radicals. The intermediate formed was captured by the ortho-iodobenzoate substrate, yielding intermediate 3, which then underwent the FeCl3-catalyzed elimination of ortho-iodobenzoate at a higher temperature to form an α,β-unsaturated intermediate. The subsequent intramolecular Michael reaction of the intermediate yielded the final target compound 4. In summary, a series of ATFQLs 4 were synthesized through the formation of two bonds (C═C and C-C).
Collapse
Affiliation(s)
- Qin Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhi-Bo Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Cen Jian
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Kun-Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Kun Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
2
|
Palamini P, Schoepfer AA, Waser J. Photocatalyzed Azidofunctionalization of Alkenes via Radical-Polar Crossover. Angew Chem Int Ed Engl 2025; 64:e202420455. [PMID: 39748637 DOI: 10.1002/anie.202420455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Indexed: 01/04/2025]
Abstract
The azidofunctionalization of alkenes under mild conditions using commercially available starting materials and easily accessible reagents is reported based on a radical-polar crossover strategy. A broad range of alkenes, including vinyl arenes, enamides, enol ethers, vinyl sulfides, and dehydroamino esters, were regioselectively functionalized with an azide and nucleophiles such as azoles, carboxylic acids, alcohols, phosphoric acids, oximes, and phenols. The method led to a more efficient synthesis of 1,2-azidofunctionalized pharmaceutical intermediates when compared to previous approaches, resulting in both reduction of step count and increase in overall yield. The scope and limitations of these transformations were further investigated through a standard unbiased selection of 15 substrate combinations out of 1,175,658 possible using a clustering technique.
Collapse
Affiliation(s)
- Pierre Palamini
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Alexandre A Schoepfer
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Biswas S, Mallick M, K S GN, Chandu P, Sureshkumar D. A Visible Light Photoredox Approach for Synthesizing Sulfone-Functionalized Cyclopropenes. Org Lett 2024; 26:10207-10212. [PMID: 39585300 DOI: 10.1021/acs.orglett.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
We have developed a tandem method essential for synthesizing sulfone-containing organic molecules, which has wide-ranging applications in agrochemicals, medicinal chemistry, and polymer science. This method involves a two-step process: an iodo-sulfonylated intermediate is formed initially, followed by elimination to regenerate the double bond, ultimately yielding sulfone-containing cyclopropenes. Control studies have confirmed the intermediacy of iodo-sulfonylated cyclopropane within the reaction sequence. Additionally, this protocol demonstrated an excellent tolerance for various functional groups. Moreover, the resulting sulfonylated-cyclopropenes are promising synthons for late-stage modification and molecular diversification.
Collapse
Affiliation(s)
- Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Manasi Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Nanda K S
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
4
|
Borrel J, Waser J. SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes. Beilstein J Org Chem 2024; 20:701-713. [PMID: 38590536 PMCID: PMC10999984 DOI: 10.3762/bjoc.20.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
We report the detailed background for the discovery and development of the synthesis of homopropargylic azides by the azido-alkynylation of alkenes. Initially, a strategy involving SOMOphilic alkynes was adopted, but only resulted in a 29% yield of the desired product. By switching to a radical-polar crossover approach and after optimization, a high yield (72%) of the homopropargylic azide was reached. Full insights are given about the factors that were essential for the success of the optimization process.
Collapse
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Biswas S, Chandu P, Garai S, Sureshkumar D. Diastereoselective Hydroacylation of Cyclopropenes by Visible-Light Photocatalysis. Org Lett 2023; 25:7863-7867. [PMID: 37882545 DOI: 10.1021/acs.orglett.3c03095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
An efficient and general strategy for the hydroacylation of cyclopropene is disclosed for synthesizing various 2-acylcyclopropane derivatives under mild reaction conditions. High functional group tolerance of this protocol features a novel route to access a divergent synthesis of acylated cyclopropane in a diastereoselective manner by photoinduced decarboxylation of α-ketoacid followed by acyl radical addition to cyclopropene. Additionally, the regioselective addition of acyl radical at the least substituted olefinic carbon center with trans-selective fashion makes this protocol more appealing toward natural product development.
Collapse
Affiliation(s)
- Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India 741246
| | - Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India 741246
| | - Sumit Garai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India 741246
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India 741246
| |
Collapse
|
6
|
Borrel J, Waser J. Azido-alkynylation of alkenes through radical-polar crossover. Chem Sci 2023; 14:9452-9460. [PMID: 37712015 PMCID: PMC10498506 DOI: 10.1039/d3sc03309k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
We report an azido-alkynylation of alkenes allowing a straightforward access to homopropargylic azides by combining hypervalent iodine reagents and alkynyl-trifluoroborate salts. The design of a photocatalytic redox-neutral radical polar crossover process was key to develop this transformation. A variety of homopropargylic azides possessing electron-rich and -poor aryls, heterocycles or ether substituents could be accessed in 34-84% yield. The products are synthetically useful building blocks that could be easily transformed into pyrroles or bioactive amines.
Collapse
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Liu GX, Jie XT, Li XL, Yang LS, Qiu H, Hu WH. Carbon-Centered Radical with Leaving Group-Mediated Ring Opening of Cyclopropenes via the Rearrangement of Cyclopropyl to the Allyl Radical: A General Access to Multisubstituted 1,3-Dienes. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Geng-Xin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Xiao-Ting Jie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Xing-lin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Li-Sheng Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Wen-Hao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
8
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
9
|
Mironova IA, Kirsch SF, Zhdankin V, Yoshimura A, Yusubov MS. Hypervalent Iodine‐Mediated Azidation Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Irina A. Mironova
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| | - Stefan F. Kirsch
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Fakultät für Mathematik und Naturwissenschaften GERMANY
| | - Viktor Zhdankin
- University of Minnesota Duluth Chemistry 1039 University Dr 55812 Duluth UNITED STATES
| | - Akira Yoshimura
- Aomori University: Aomori Daigaku Department of Pharmacy JAPAN
| | - Mekhman S. Yusubov
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| |
Collapse
|
10
|
Patel BK, Dahiya A, Sahoo AK, Chakraborty N, Das B. Updates on hypervalent-iodine reagents in metal-free organic synthesis. Org Biomol Chem 2022; 20:2005-2027. [DOI: 10.1039/d1ob02233d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine (HVI) chemistry is a rapidly growing subdomain of contemporary organic chemistry because of its enormous synthetic applications. The high nucleofugality of the phenyliodonio group (I+Ph) and their radical...
Collapse
|