1
|
Majerová S, Chlupatý T, Samsonov MA, Cvačka J, Procházková E, Růžička A. Addition of Lithium Silylamides to 1,2-Dicyanobenzene: Isoindoline-1,3-diimine Derivatives Investigated by NMR/XRD/DFT Approach. Inorg Chem 2025; 64:7592-7606. [PMID: 40198575 PMCID: PMC12015960 DOI: 10.1021/acs.inorgchem.5c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Phthalocyanines and their building blocks, isoindoline-1,3-diimines (diiminoisoindoles, DIIs), represent a structurally diverse class of compounds with the ability to make metal complexes and perform in various fields from medicine to photovoltaics and homogeneous catalysis. According to the present study, monosubstituted diiminoisoindoles, their higher homologues, and complexes can be effectively prepared by addition of silylated lithium amides to 1,2-dicyanobenzene followed by mild protonolysis or a condensation. An addition of DII to carbodiimides or reactions of lithiated DIIs with acyl chlorides give DII-guanidines and amido derivatives. The imino group of the amido derivatives is preferentially and quantitatively reduced by sodium borohydride. Dynamic behavior and structure of all studied classes of compounds were investigated from the stereochemical point of view─possible E/Z-isomerization and dimerization (DIIs and amido derivatives), tautomerism (guanidines), and stability both in solution and in solid state. The resonance-assisted hydrogen bonds are present in all species except reduced amides, predetermining them to be exceptional ligands in coordination chemistry.
Collapse
Affiliation(s)
- Stanislava Majerová
- Department
of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Tomáš Chlupatý
- Department
of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Maksim A. Samsonov
- Department
of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Josef Cvačka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, Prague 160 00, Czech Republic
| | - Eliška Procházková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, Prague 160 00, Czech Republic
| | - Aleš Růžička
- Department
of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| |
Collapse
|
2
|
Shang Y, Li Z, Zhu Z, Guo L, Wu Q, Guo X, Zhang L, Yu C, Hao E, Jiao L. Strategic Construction of meso-Aryl-Substituted N,N-Carbonyl-Bridged Dipyrrinones as Small, Bright, and Tunable Fluorophores. Org Lett 2024; 26:1573-1578. [PMID: 38334420 DOI: 10.1021/acs.orglett.3c04324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A series of novel N,N-carbonyl-bridged dipyrrinone fluorophores have been directly constructed from α-halogenated dipyrrinones, which are conveniently obtained from the acid-catalyzed hydrolysis of readily available α,α'-dihalodipyrrins. This novel methodology affords efficient modulation of the functional groups at both the meso- and α-positions of this fluorophore. These resultant dyes show tunable absorption and emission wavelengths, good molar absorption coefficients, relatively large Stokes shifts, and excellent fluorescence quantum yields up to 0.99, and have been successfully applied in both one- and two-photon fluorescence microscopy imaging in living cells.
Collapse
Affiliation(s)
- Yingjian Shang
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhongxin Li
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhaoyang Zhu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Luying Guo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lei Zhang
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
3
|
Wang Z, Guo X, Kang Z, Wu Q, Li H, Cheng C, Yu C, Jiao L, Hao E. Aryl-Boron-Substituted BODIPYs: Direct Access via Aluminum-Chloride-Mediated Arylation from Arylstannanes and Tuning the Optoelectronic Properties. Org Lett 2023; 25:744-749. [PMID: 36700834 DOI: 10.1021/acs.orglett.2c04184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient procedure is presented for functionalization of BODIPYs at boron with arylstannanes as weak nucleophiles in the presence of aluminum chloride, providing new aryl-boron-substituted BODIPY and aza-BODIPY derivatives of singular importance. Most of these aryl-boron-substituted BODIPYs showed bright emission in the aqueous solution with significant aggregation-induced emission enhancement and high solid-state emission as a result of the restricted rotation of the meso-phenyl group and boron-substituted aryl groups as well as the formation of J-type aggregates.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Zhengxin Kang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, People's Republic of China
| | - Heng Li
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Cheng Cheng
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| |
Collapse
|
4
|
Gupta MK, Sharma NK. A new amino acid, hybrid peptides and BODIPY analogs: synthesis and evaluation of 2-aminotroponyl-L-alanine (ATA) derivatives. Org Biomol Chem 2022; 20:9397-9407. [PMID: 36398538 DOI: 10.1039/d2ob01905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural aromatic α-amino acid residues play critical roles in the structural and functional organization of proteins owing to π-interactions. Their aromatic residues are derived from benzenoid scaffolds. Non-benzenoid aromatic scaffolds such as tropone and tropolone are also constituents of troponoid natural products. Tropolone has also the ability to exhibit π-interactions along with additional hydrogen bonding. Thus, amino acids comprising troponyl could be potential building blocks of novel peptidomimetics. This report describes the synthesis of the L-aminotroponylalanine amino acid (ATA) and its unusual activity with the peptide coupling agent EDC. Importantly, its di-peptides form β-sheet/-turn type secondary structures in organic solvents owing to the troponyl residue. This amino acid is an excellent scaffold for the synthesis of fluorescent amino acids such as BODIPY amino acid analogs. Nevertheless, this amino acid and its BODIPY derivatives can enter HeLa cells without exhibiting significant cytotoxicity at low concentrations (∼50 μM). Hence, ATA and its BODIPY derivatives are promising aromatic amino acids for the construction of potential peptidomimetics and fluorescent labelling of target peptides.
Collapse
Affiliation(s)
- Manish K Gupta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni Campus, Bhubaneswar-752050, Odisha, India. .,HBNI-Mumbai, Mumbai, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni Campus, Bhubaneswar-752050, Odisha, India. .,HBNI-Mumbai, Mumbai, India
| |
Collapse
|
5
|
He W, Zhang D, Wang J, Xu Z, Du J, Jiang XD. Ring‐fused dipyrrolyldiketone difluoroboron complexes for pioneering exploration of photothermal effect. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wanru He
- Shenyang University of Chemical Technology Liaoning &Shenyang Key Laboratory of Functional Dye and Pigment CHINA
| | - Dongxiang Zhang
- Shenyang University of Chemical Technology Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment CHINA
| | - Jie Wang
- Northeastern University Department of Chemistry CHINA
| | - Zhangrun Xu
- Northeastern University Department of Chemistry CHINA
| | - Jianjun Du
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xin-Dong Jiang
- Shenyang University of Chemical Technology Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment Shenyang 110142 Shenyang CHINA
| |
Collapse
|
6
|
Four-Coordinate Monoboron Complexes with 8-Hydroxyquinolin-5-Sulfonate: Synthesis, Crystal Structures, Theoretical Studies, and Luminescence Properties. CRYSTALS 2022. [DOI: 10.3390/cryst12060783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
8-Hydroxyquinolin-5-sulfonic acid (8HQSA) was combined with 3-pyridineboronic acid (3PBA) or 4-pyridineboronic acid (4PBA) to give two zwitterionic monoboron complexes in crystalline form. The compounds were characterized by elemental analysis, single-crystal X-ray diffraction studies, and IR, 1H NMR, UV-Visible, and luminescence spectroscopy. The analyses revealed compounds with boron atoms adopting tetrahedral geometry. In the solid state, the molecular components are linked by charge-assisted (B)(O-H···−O(S) and N+-H···O(S) hydrogen bonds aside from C-H···O contacts and π···π interactions, as shown by Hirshfeld surface analyses and 2D fingerprint plots. The luminescence properties were characterized in terms of the emission behavior in solution and the solid state, showing emission in the bluish-green region in solution and large positive solvatofluorochromism, caused by intramolecular charge transfer. According to TD-DFT calculations at the M06-2X/6-31G(d) level of theory simulating an ethanol solvent environment, the emission properties are originated from π-π * and n-π * HOMO-LUMO transitions.
Collapse
|
7
|
Gaire S, Schrage BR, Nemykin VN, Ziegler CJ. Pyrazole and Indazole Semihemiporphyrazine Complexes of Rhenium Tricarbonyl: A Structure/Properties Study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sanjay Gaire
- Department of Chemistry University of Akron Akron OH 44325 USA
| | - Briana R. Schrage
- Department of Chemistry University of Akron Akron OH 44325 USA
- Department of Chemistry University of Tennessee Knoxville TN 37996 USA
| | - Victor N. Nemykin
- Department of Chemistry University of Tennessee Knoxville TN 37996 USA
| | | |
Collapse
|
8
|
Murali AC, Nayak P, Venkatasubbaiah K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans 2022; 51:5751-5771. [PMID: 35343524 DOI: 10.1039/d2dt00160h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetra-coordinated boron compounds offer a plethora of luminescent materials. Different chelation around the boron center (O,O-, N,C-, N,O-, and N,N-) has been explored to tune the electronic and photophysical properties of tetra-coordinated boron compounds. A number of fascinating molecules with interesting properties such as aggregation induced emission, mechanochromism and tunable emission by changing the solvent polarity were realised. Owing to their rich and unique properties, some of the molecules have shown applications in making optoelectronic devices, probes and so on. This perspective provides an overview of the recent developments of tetra-coordinated boron compounds and their potential applications.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|
9
|
Rational Design and Synthesis of Large Stokes Shift 2,6-Sulphur-Disubstituted BODIPYs for Cell Imaging. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Five new disubstituted 2,6-thioaryl-BODIPY dyes were synthesized via selective aromatic electrophilic substitution from commercially available thiophenols. The analysis of the photophysical properties via absorption and emission spectroscopy showed unusually large Stokes shifts for BODIPY fluorophores (70–100 nm), which makes them suitable probes for bioimaging. Selected compounds were evaluated for labelling primary immune cells as well as different cancer cell lines using confocal fluorescence microscopy.
Collapse
|
10
|
Li W, Gong Q, Guo X, Wu Q, Chang F, Wang H, Zhang F, Hao E, Jiao L. Synthesis, Reactivity, and Properties of a Class of π-Extended BODIPY Derivatives. J Org Chem 2021; 86:17110-17118. [PMID: 34748343 DOI: 10.1021/acs.joc.1c02216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new family of π-extended BODIPY derivatives were obtained through the condensation of aldehyde and pyrrole in aqueous solution in the presence of HCl. The new rigid π-framework extends beyond the dipyrromethene unit, which is significantly different from classical BODIPYs in the electronic configuration. Both π-extended BODIPYs displayed intense absorption and moderate emission with maxima around 565 and 620 nm, respectively, and showed interesting reactivity toward various nucleophiles. Moreover, these π-extended BODIPYs were developed as fluorescent probes for rapid and selective detection of GSH and were successfully applied for live-cell imaging.
Collapse
Affiliation(s)
- Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fei Chang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fan Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
11
|
Su Y, Hu Q, Zhang D, Shen Y, Li S, Li R, Jiang XD, Du J. 1,7-Di-tert-butyl-Substituted aza-BODIPYs by Low-Barrier Rotation to Enhance a Photothermal-Photodynamic Effect. Chemistry 2021; 28:e202103571. [PMID: 34757667 DOI: 10.1002/chem.202103571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 01/10/2023]
Abstract
1,7-Di-tert-butyl-substituted aza-BODIPYs (tBu-azaBDP) were successfully obtained for the first time. The structures of tBu-azaBDP and Ph-azaBDP were confirmed by X-ray crystal analysis, and tBu-azaBDP 2 is more twisted than Ph-azaBDP 5. tBu-azaBDPs have significant photo-stability and enhanced water solubility. tBu-azaBDPs possess excellent optical properties, such as high molar extinction coefficients, broad full width half maxima, and large Stokes shifts, which is comparable to those of the parent dye Ph-azaBDP. Although the low-barrier rotation of the distal -tBu groups in tBu-azaBDPs results in low quantum yield, photothermal conversion efficiency and singlet oxygen generation ability of tBu-azaBDPs are more effective than those of Ph-azaBDP, which is highly desirable for a photothermal-photodynamic therapy agent.
Collapse
Affiliation(s)
- Yajun Su
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Dongxiang Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Yue Shen
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Sicheng Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Ran Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Xin-Dong Jiang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
12
|
Gong Q, Wu Q, Guo X, Li W, Wang L, Hao E, Jiao L. Strategic Construction of Sulfur-Bridged BODIPY Dimers and Oligomers as Heavy-Atom-Free Photosensitizers. Org Lett 2021; 23:7220-7225. [PMID: 34463517 DOI: 10.1021/acs.orglett.1c02622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient strategy for building sulfur-bridged oligo-BODIPYs based on the SNAr reaction is described. These oligo-BODIPYs showed broadband and strong visible-near-infrared (NIR) light absorption, strong intramolecular exciton coupling, and efficient intersystem crossing (ISC). Generation of 1O2 as well as O2•- under irradiation was found to give high reactive oxygen species generation efficiencies for those oligomers.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
13
|
Schrage BR, Farmer CA, Nemykin VN, Ziegler CJ. The synthesis and characterization of ylideneisoindolinones. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
1,3-Diiminoisoindoline (DII) and the closely related molecule, iminoisoindolinone are important precursors in the synthesis of macrocycles and chelates such as phthalocyanines, and bis(arylimino)isoindolines, as well as chromophores including aza-BODIPY dyes. A series of seven ylideneisoindolinones are presented in this report. The reaction of various organic CH acids and iminoisoindolinone produce compounds that show strong [Formula: see text]* transitions in the UV region. The chromophores have been characterized spectroscopically and the X-ray structures show electronic delocalization across the chromophore. Additionally, DFT and time-dependent DFT calculations confirm the lower energy absorbances are primarily HOMO-LUMO transitions.
Collapse
Affiliation(s)
- Briana R. Schrage
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, USA
| | - Colton A. Farmer
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, USA
| | - Victor N. Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|