1
|
Li L, Yin ZC, Xia XL, Zhang ZY, Wang GW. Mechanochemical Synthesis of Indene-Containing Spirolactones via Tf 2O-Promoted Cascade Cyclization of 2-Benzoylbenzoic Acids with Arylalkynes. Org Lett 2025; 27:5009-5013. [PMID: 40326245 DOI: 10.1021/acs.orglett.5c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The Tf2O-promoted cascade cyclization of 2-benzoylbenzoic acids with arylalkynes was achieved under solvent-free ball-milling conditions. This process renders rapid entry to the rare indene-containing spirolactones via intramolecular cyclization of 2-benzoylbenzoic acids and subsequent annulation with arylalkynes, which resulted in one C-O and two C-C bond formations. As the reactions utilize easily available starting materials and proceed in the absence of organic solvents, the present protocol constitutes an expedient and environmentally friendly access to indene-containing spirolactones.
Collapse
Affiliation(s)
- Liang Li
- Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui 230601, P. R. China
| | - Zheng-Chun Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Xu-Ling Xia
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhi-Ying Zhang
- Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui 230601, P. R. China
| | - Guan-Wu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
2
|
Ghosh P, Saikia AK. BF 3·OEt 2-catalyzed/mediated alkyne cyclization: a comprehensive review of heterocycle synthesis with mechanistic insights. Org Biomol Chem 2024; 22:8991-9020. [PMID: 39431437 DOI: 10.1039/d4ob01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The quest for efficient and versatile methods for heterocycle synthesis continues to drive innovation in organic chemistry. In this context, the cyclization of alkynes catalyzed or mediated by boron trifluoride diethyl etherate (BF3·OEt2) has emerged as a powerful and widely applicable strategy. This review provides a comprehensive and authoritative overview of BF3·OEt2-catalyzed/mediated alkyne cyclization reactions, covering the scope, mechanisms, and applications of these processes. We discuss the synthesis of a diverse range of heterocyclic compounds, including dihydropyrans, quinolines, dehydropiperidines, oxindoles and others, and highlight the unique advantages of BF3·OEt2 as a catalyst/mediator. Recent advances, challenges, and future directions in this rapidly evolving field are also addressed. This review aims to serve as a valuable resource for synthetic chemists, inspiring further research and applications in this exciting area.
Collapse
Affiliation(s)
- Priya Ghosh
- Department of Chemistry, Ganesh Lal Choudhury College, Borpeta-781315, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
3
|
Tian JR, Qin H, Liu L, Wang J, Li L, Song YL, You ZH. Substrate-Controlled Regioselective Cascade Reactions of Deconjugated Butenolides and Cinnamaldehydes: Access to Structurally Diverse Spirobutenolides. Org Lett 2024; 26:8686-8690. [PMID: 39360935 DOI: 10.1021/acs.orglett.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Two different cascade pathways to access spirobutenolides were achieved based on the substrate-controlled regioselectivity of deconjugated butenolides. A new class of functional deconjugated butenolides was designed and exhibited superior γ-regioselectivity in the vinylogous Michael/Michael cascade reactions with cinnamaldehydes. The aryl-substituted deconjugated butenolides and cinnamaldehydes underwent a Michael/Michael/aldol/dehydration cascade process induced by double α-regioselectivities. Both conjugated and deconjugated spirobutenolides could be obtained in good yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Juan-Ru Tian
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Hang Qin
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Lanbo Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Jie Wang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Longfei Li
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Ya-Li Song
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Zhi-Hao You
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Gang YC, Dong L. The Construction of Novel Spirocyclic Frameworks with Cyclobutane through Rh(III)-Catalyzed [3 + 2]-Annulation between Quinoxalines and Alkynylcyclobutanols. J Org Chem 2024; 89:12912-12923. [PMID: 39225374 DOI: 10.1021/acs.joc.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An effective synthesis strategy for the preparation of 1'H-spiro[indene-1,2'-quinoxaline] has been developed. This involves a Rh(III)-catalyzed [3 + 2]-annulation of quinoxalines with alkynylcyclobutanols. The developed protocol offers a straightforward method for the preparation of versatile heterocyclic compounds with a four-membered ring and is compatible with a wide range of functional groups.
Collapse
Affiliation(s)
- Yi-Chi Gang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Obydennik AY, Titov AA, Listratova AV, Borisova TN, Rybakov VB, Voskressensky LG, Varlamov AV. Concise and Free-Metal Access to Lactone-Annelated Pyrrolo[2,1- a]isoquinoline Derivatives via a 1,2-Rearrangement Step. Int J Mol Sci 2024; 25:1085. [PMID: 38256158 PMCID: PMC10816086 DOI: 10.3390/ijms25021085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Here, An efficient approach to obtaining previously unknown furo[2',3':2,3]pyrrolo[2,1-a]isoquinoline derivatives from readily available 1-R-1-ethynyl-2-vinylisoquinolines is described. The reaction features a simple procedure, occurs in hexaflouroisopropanol and does not require elevated temperatures. It has been found that the addition of glacial acetic acid significantly increases the yields of the target spirolactone products. Using trifluoroethanol instead of hexaflouroisopropanol results in the formation of pyrido[2,1-a]isoquinolines.
Collapse
Affiliation(s)
- Arina Y. Obydennik
- Organic Chemistry Department, Science Faculty, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (A.Y.O.); (A.A.T.); (A.V.L.); (T.N.B.); (A.V.V.)
| | - Alexander A. Titov
- Organic Chemistry Department, Science Faculty, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (A.Y.O.); (A.A.T.); (A.V.L.); (T.N.B.); (A.V.V.)
| | - Anna V. Listratova
- Organic Chemistry Department, Science Faculty, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (A.Y.O.); (A.A.T.); (A.V.L.); (T.N.B.); (A.V.V.)
| | - Tatiana N. Borisova
- Organic Chemistry Department, Science Faculty, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (A.Y.O.); (A.A.T.); (A.V.L.); (T.N.B.); (A.V.V.)
| | - Victor B. Rybakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia;
| | - Leonid G. Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (A.Y.O.); (A.A.T.); (A.V.L.); (T.N.B.); (A.V.V.)
| | - Alexey V. Varlamov
- Organic Chemistry Department, Science Faculty, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (A.Y.O.); (A.A.T.); (A.V.L.); (T.N.B.); (A.V.V.)
| |
Collapse
|
6
|
Tang Y, Shi W, Du J, Ren Y, Xiao Y, Guo H. Diastereoselective Synthesis of Allenes through Phosphine-Catalyzed Cascade Isomerization/Annulation. Org Lett 2023. [PMID: 38019529 DOI: 10.1021/acs.orglett.3c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Phosphine-catalyzed cascade isomerization/annulation has been developed to realize a diastereoselective synthesis of allenes installed on the hexahydropentalene skeleton, which contains five chiral centers (and one axial chirality). This reaction tolerated a broad range of allenoates and enynes. The allene products were transformed to various halogen-substituted fused-ring compounds.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Juan Du
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yue Ren
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
7
|
Huang L, Yang L, Wan JP, Zhou L, Liu Y, Hao G. Metal-free three-component assemblies of anilines, α-keto acids and alkyl lactates for quinoline synthesis and their anti-inflammatory activity. Org Biomol Chem 2022; 20:4385-4390. [PMID: 35579116 DOI: 10.1039/d2ob00661h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new and metal-free three-component method for the synthesis of 2,4-disubstituted quinolines via the reactions of anilines, α-keto acids and alkyl lactates is reported. The reactions proceed in the presence of p-toluene sulfonic acid (p-TSA) and tert-butyl peroxybenzoate (TBPB) to provide diverse quinoline products via the construction of new CC double, C-C single and CN double bonds without producing any organic mass-based side product. Notably, the anti-inflammatory activity of the quinolines has been investigated by measuring their ability to inhibit NO release by lipopolysaccharide (LPS) induced RAW264.7 cells, leading to the identification of 4i, 4t and 4x as potent anti-inflammatory compounds in vitro.
Collapse
Affiliation(s)
- Lizhu Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Lu Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
8
|
Shen M, Xu Y, Zhang X, Fan X. Synthesis of Spirocyclopropylpyrazole Derivatives via the Cascade Reaction of Alkylidenecyclopropanes with Pyrazolidinones and Trifluoroethanol. Org Chem Front 2022. [DOI: 10.1039/d1qo01921j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthesis of spirocyclopropylpyrazole derivatives tethered with a trifluoromethyl unit through an unprecedented cascade reaction of alkylidenecyclopropanes with pyrazolidinones and trifluoroethanol (TFE) has been developed. Mechanistically, the reaction involves...
Collapse
|
9
|
Cheng Z, Gu Q, Xie Y, Zhang Y, Zeng X. BF 3·Et 2O-Mediated annulation of α-keto acids with aliphatic ketones for the synthesis of γ-hydroxy-butenolides and γ-alkylidene-butenolides. RSC Adv 2022; 12:24237-24241. [PMID: 36128547 PMCID: PMC9404108 DOI: 10.1039/d2ra04546j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Annulation reaction of α-keto acids with cyclic or acyclic aliphatic ketones is reported herein to divergently access γ-hydroxy-butenolides and γ-alkylidene-butenolides depending on the amount of BF3·Et2O. This protocol features good functional tolerance and ease of operation, to open a route to access butenolides via an annulation and dehydration process. An efficient approach to divergently access γ-hydroxy-butenolides and γ-alkylidene-butenolides via annulation reaction of α-keto acids with simple aliphatic ketones is reported herein.![]()
Collapse
Affiliation(s)
- Zhenfeng Cheng
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Qingyun Gu
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Yushan Xie
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| |
Collapse
|
10
|
Xu Y, Yu C, Zhang X, Fan X. Synthesis of Indolyl-Tethered Spiro[cyclobutane-1,1'-indenes] through Cascade Reactions of 1-(Pyridin-2-yl)-1 H-indoles with Alkynyl Cyclobutanols. Org Lett 2021; 23:8510-8515. [PMID: 34652921 DOI: 10.1021/acs.orglett.1c03200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Presented herein is an efficient and unprecedented synthesis of indolyl-tethered spiro[cyclobutane-1,1'-indenes] through the cascade reaction of 1-(pyridin-2-yl)-1H-indoles with alkynyl cyclobutanols. Mechanistic experiments implicate a sequential process in which 1-(pyridin-2-yl)-1H-indole first undergoes an alkenylation with alkynyl cyclobutanol followed by an intramolecular Friedel-Crafts reaction to give the title products. The utility of this novel protocol was reflected by the ample substrate scope, high chemo- and regioselectivity, removable directing group, and scalable preparation. In addition, the product thus obtained can be further derivatized quite efficiently.
Collapse
Affiliation(s)
- Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Chen L, Lin C, Zhang S, Zhang X, Zhang J, Xing L, Guo Y, Feng J, Gao J, Du D. 1,4-Alkylcarbonylation of 1,3-Enynes to Access Tetra-Substituted Allenyl Ketones via an NHC-Catalyzed Radical Relay. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Chen
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chen Lin
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Simiao Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaojin Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianming Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lianjie Xing
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yage Guo
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|