1
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
2
|
Mahato S, Ghorai D, Das KK, Roy L, Panda S. Alkoxide-Assisted Stereoselective Functionalization of 1,2-Bis-boronic Esters Under Photoredox Catalysis. Org Lett 2024; 26:6760-6765. [PMID: 39052950 DOI: 10.1021/acs.orglett.4c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Site-specific functionalization of the secondary C-B bond of 1,2-bis-boronic esters has been proven to be an important method for the generation of 1,2-bis-functionalized compounds in a highly stereoselective manner. We have explored previously unknown secondary selective alkenylation, allylation, alkynylation and addition to aryl vinyl trifluoromethane, which proceeds via a novel reaction mechanism: alkoxide-mediated photoredox activation to generate secondary radicals over the primary one.
Collapse
Affiliation(s)
- Somenath Mahato
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, West Bengal, India
| | - Debraj Ghorai
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, West Bengal, India
| | - Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, West Bengal, India
| | - Lisa Roy
- IOC Odisha Campus Bhubaneswar, Mouza: Samantapuri, Bhubaneswar-751013, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, West Bengal, India
| |
Collapse
|
3
|
Dai Y, Li Z, Pu M, Lei M. Understanding the Mechanism and Selectivity of 1,1-Diborylalkanes from Alkenes Catalyzed by a Zirconium Complex. Inorg Chem 2023. [PMID: 37365139 DOI: 10.1021/acs.inorgchem.3c01684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The synthesis of 1,1-diborylalkanes from readily available alkenes is an appealing method. The density functional theory (DFT) method was employed to investigate the reaction mechanism of 1,1-diborylalkanes, which was synthesized from alkenes and a borane, and the reaction was catalyzed by a zirconium complex Cp2ZrCl2. The entire reaction is divided into two cycles: dehydrogenative boration to form vinyl boronate esters (VBEs) and hydroboration of VBEs. This article focuses on the hydroboration cycle and elaborates on the role of the reducing reagents in the equilibrium of self-contradictory reactivity (dehydrogenative boration and hydroboration). The H2 and HBpin pathways were investigated as the reducing reagents in the hydroboration process. The calculated results showed that it is more advantageous to use H2 as a reducing agent (path A). Furthermore, the σ-bond metathesis is the rate-determining step (RDS) with an energetic span of 21.4 kcal/mol. This is consistent with the self-contradictory reactivity balance proposed in the experiment. The reaction modes of the hydroboration process were also discussed. These analyses revealed the origin of selectivity in this boration reaction, in which the σ-bond metathesis of HBpin needs to overcome the strong interaction between HBpin and the Zr metal. Meanwhile, the origin of the selectivity of different positions of H2 is the interaction between the σ(H1-H2) → σ*(Zr1-C1) overlap and these findings have implications for catalyst design and application.
Collapse
Affiliation(s)
- Yulan Dai
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Iron/B2pin2 catalytic system enables the generation of alkyl radicals from inert alkyl C-O bonds for amine synthesis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
Li X, Li Y, Wang Z, Shan W, Liu R, Shi C, Qin H, Yuan L, Li X, Shi D. Nickel-Catalyzed Stereoselective Cascade C–F Functionalizations of gem-Difluoroalkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Yuxiu Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, Guangdong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Leifeng Yuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, 168 Weihai Road, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
6
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Diverse reactivity of the gem-difluorovinyl iodonium salt for direct incorporation of the difluoroethylene group into N- and O-nucleophiles. Commun Chem 2022; 5:167. [PMID: 36697903 PMCID: PMC9814539 DOI: 10.1038/s42004-022-00772-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
The synthesis of gem-difluoroethylene compounds remains a difficult task in organic synthesis. Here, the direct difluoroethylation reactions of N- and O-nucleophiles including amides and acids were realized with a hypervalent iodine reagent: gem-difluorovinyl iodonium salt (DFVI). The reactions were accomplished via a neighbouring group rearrangement. The gem-difluorovinyl iodonium salt was found to display diverse reactivity due to its unique electronic effect and was applied to the incorporation of difluoroethylene group, including difluorovinylation of carboxylic acids, difluorovinylation and 1,3-cyclic fluorovinylation of amides and 1,1-cyclic difluoroethylation of amines.
Collapse
|
8
|
Zhang ZK, Feng YL, Ruan Z, Xu YQ, Cao ZY, Li MH, Wang C. Nickel(II)-catalyzed highly selective 1,2-diborylation of non-activated monosubstituted alkenes. Chem Commun (Camb) 2022; 58:11709-11712. [PMID: 36178252 DOI: 10.1039/d2cc04382c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical method for 1,2-diborylation of non-activated monosubstituted alkenes via nickel catalysis has been developed. The protocol features high functional group tolerance and can be applied for the formal synthesis of drugs and modification of natural product derivatives. Preliminary mechanistic studies imply the involvement of a Ni(II) catalytic cycle.
Collapse
Affiliation(s)
- Zhi-Kai Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Ya-Li Feng
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industrial Technology, Zhengzhou, 451100, China
| | - Zheng Ruan
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Meng-Hua Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Chao Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
9
|
Synthesis of mono‐Fluoroallenes through Copper‐Catalyzed Defluorinative Silylation of α,α‐Difluoroalkylalkynes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Li S, Wang Y, Zhong L, Wang S, Liu Z, Dai Y, He Y, Feng Z. Boron-Promoted Umpolung Reaction of Sulfonyl Chlorides for the Stereospecific Synthesis of Thioglycosides via Reductive Deoxygenation Coupling Reactions. Org Lett 2022; 24:2463-2468. [PMID: 35333062 DOI: 10.1021/acs.orglett.2c00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Glycosides have broad biological activities and serve as stable mimics of natural O-glycoside counterparts and thus are of great therapeutic potential. Herein we disclose an efficient method for the stereospecific synthesis of 1-thioglycosides via a boron-promoted reductive deoxygenation coupling reaction from readily accessible sulfonyl chlorides and glycosyl bromides. Our protocol features mild conditions and excellent functional group tolerance and stereoselectivity. The translational potential of this metal-free approach is demonstrated by the late-stage glycodiversification of natural products and drug molecules.
Collapse
Affiliation(s)
- Siyu Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yujuan Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Lei Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Siyu Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhengli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
11
|
Hu Y, Liu X, Ren Z, Hu B, Li J. Csp3‒H Monofluoroalkenylation via Stereoselective C‒F Bond Cleavage. Chem Commun (Camb) 2022; 58:2734-2737. [DOI: 10.1039/d1cc06247f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical nickel- and photoredox-catalyzed Csp3‒H monofluoroalkenylation through chelation-assisted Csp2‒F bond cleavage of gem-difluoroalkenes has been developed, which provides an expedient access to the synthesis of tetrasubstituted fluoroalkenes with complete...
Collapse
|
12
|
Zhang J, Geng S, Feng Z. Advances in silylation and borylation of fluoroarenes and gem-difluoroalkenes via C-F bond cleavage. Chem Commun (Camb) 2021; 57:11922-11934. [PMID: 34700335 DOI: 10.1039/d1cc04729a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organoboron and organosilane compounds are widely used in organic synthesis and pharmaceuticals. In addition, the C-F bond functionalization is a useful tool for the construction of carbon-carbon and carbon-heteroatom bonds. In particular, the late-stage functionalization of bioactive molecules through defluoroborylation and defluorosilylation reactions will provide good opportunities for the development and diversification of new medicinal compounds. Thus, this feature article summarized the methods for the defluorosilylation and defluoroborylation of unreactive monofluoroarenes and gem-difluoroalkenes from 2000 to 2021, which might create some new ideas and will be helpful for further research in this field. These defluoroborylation and defluorosilylation strategies can be applied to synthesize silylated arenes, borylated arenes, silylated fluoroalkenes, and borylated fluoroalkenes, thus providing impressive advantages over traditional methods for the synthesis of organoboron and organosilane compounds in terms of divergent structures.
Collapse
Affiliation(s)
- Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|
13
|
Sun M, Tao M, Zhao L, Li W, Liu Z, He CY, Feng Z. Iron-catalyzed C–F bond silylation and borylation of fluoroarenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00839k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-catalyzed functionalization of inert bonds has scarcely been documented.
Collapse
Affiliation(s)
- Minghui Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Maoling Tao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Weipiao Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Zhengli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Sichuan Key Laboratory of Medical Imaging & School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|