1
|
Kumari V, Acharya SS, Mondal N, Choudhury LH. Maleimide-Dependent Rh(III)-Catalyzed Site-Selective Mono and Dual C-H Functionalization of 2-Arylbenzo[ d]thiazole and Oxazole Derivatives. J Org Chem 2024; 89:18003-18018. [PMID: 39625337 DOI: 10.1021/acs.joc.4c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The site-selective functionalization of aromatic compounds via C-H activation has emerged as a popular tool in organic synthesis. In this study, we report a regioselective coupling of maleimide to 2-arylbenzo[d]thiazoles in the presence of a rhodium(III) catalyst. Depending upon the nature of the substituent (R2-group) present in the maleimide substrate, either mono- or bis-1,4-addition products were observed in this methodology. In the case of R2 = aryl, cyclohexyl, and tert-butyl, mono coupling was observed, whereas substituents, such as methyl, ethyl, benzyl, and methyl thiophene, provided bis coupling as the major products. Similar selectivity was also observed in the case of 2-arylbenzo[d]oxazoles.
Collapse
Affiliation(s)
- Vidya Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801106, India
| | - Swadhin Swaraj Acharya
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801106, India
| | - Nurabul Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801106, India
| | - Lokman H Choudhury
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801106, India
| |
Collapse
|
2
|
Jahan K, Sood M, Jain O, Sahoo SC, Bharatam PV. Directed regioselective arylation of imidazo[1,2- a]pyridine-3-carboxamides using Rh(III) catalysis. Org Biomol Chem 2024; 22:7121-7127. [PMID: 39155840 DOI: 10.1039/d4ob01166j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In contrast to previously reported free-radical pathways to functionalize imidazo[1,2-a]pyridines at the C-5 centre, directing group approaches are rare. Herein, we demonstrate a rhodium(III) catalyzed efficient and regioselective strategy for directed C-5 functionalization of imidazo[1,2-a]pyridines using N-methoxyamide as a directing group. This methodology facilitates directed arylation without the necessity for pre-functionalization. It also allows for gram-scale synthesis and post-functionalization.
Collapse
Affiliation(s)
- Kousar Jahan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab, India.
- Lloyd Institute of Management and Technology, Plot No.-3, Knowledge Park-II, Greater Noida, Uttar Pradesh, India-201306
| | - Mehak Sood
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab, India.
| | - Osheen Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab, India.
| | - Subash C Sahoo
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh - 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab, India.
| |
Collapse
|
3
|
Dethe DH, Kumar V, Das R. Ru(II)-Catalyzed C-H Activation/[4+2] Annulation of Sulfoxonium Ylide with Maleimide: Access to Fused Benzo[ e]isoindole-1,3,5-trione. Org Lett 2024; 26:6830-6834. [PMID: 39102293 DOI: 10.1021/acs.orglett.4c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A ruthenium-catalyzed C-H activation and a concomitant [4+2] annulation of sulfoxonium ylide with maleimide have been demonstrated. This tandem reaction results in the formation of fused benzo[e]isoindole-1,3,5-trione. The method employs mild conditions and is free of metal oxidants. The reaction pathway predominantly involves protodemetalation over β-hydride elimination due to the lack of syn β-hydrogens.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rahul Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
4
|
Dethe DH, Kumar V, Datta A. Ru(II)-Catalyzed C-H Alkylation of N-Benzyltriflamide with Maleimides: Synthesis of o-Succinimide Substituted Benzaldehydes. Chemistry 2024:e202401301. [PMID: 38864751 DOI: 10.1002/chem.202401301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
A ruthenium-catalyzed N-benzyltriflamide assisted C-H alkylation with maleimide followed by hydrolysis of in situ generated imine has been developed for the first time. This synthetic method results in the efficient synthesis of o-succinimide derivatives of benzaldehydes. This reaction involves less expensive and mild reaction conditions and shows excellent site selectivity and good functional group compatibility.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur, 208016, India
| | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur, 208016, India
| | - Arnadeep Datta
- Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur, 208016, India
| |
Collapse
|
5
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
6
|
Suga T, Takada R, Sakamoto M, Ukaji Y. Directing-Group-Assisted Non-Strained Ether C-O Bond Homolysis Mediated by Low-Valent Titanium. Org Lett 2024; 26:2315-2320. [PMID: 38456776 DOI: 10.1021/acs.orglett.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Ether C-O bonds are typical constituents of organic molecules that are seldom regarded as reactive functional groups except when highly strained. With the assistance of appropriate directing groups, low-valent titanium was found to homolytically cleave non-strained C-O bonds. In particular, a newly designed catechol monoether directing group rendered a route toward the activation of non-benzylic C(sp3)-O bonds. This method has been applied to conventional radical addition reactions to alkenes.
Collapse
Affiliation(s)
- Takuya Suga
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| | - Ryusei Takada
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| | - Masaya Sakamoto
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| | - Yutaka Ukaji
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| |
Collapse
|
7
|
Naveen J, Satyanarayana G. Palladium-Catalyzed [3 + 2] Annulation of ortho-Substituted Iodoarenes with Maleimides via a Consecutive Double Heck-type Strategy. J Org Chem 2023; 88:16229-16247. [PMID: 37965816 DOI: 10.1021/acs.joc.3c01703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report an efficient [3 + 2] annulation of ortho-substituted iodoarenes with maleimides via a palladium-catalyzed consecutive double Heck-type strategy, leading to fused tricyclic frameworks of pharmaceutical relevance. The protocol ensued through consecutive inter- and intramolecular Heck couplings effectively. This approach was compatible with a large variety of substrates and functional groups, and it was remarkably tolerated with unprotected maleimide.
Collapse
Affiliation(s)
- Jakkula Naveen
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad ,Kandi,Sangareddy ,Telangana 502 284, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad ,Kandi,Sangareddy ,Telangana 502 284, India
| |
Collapse
|
8
|
Mondal S, Bera R, Chowdhury D, Dana S, Baidya M. Redox-Neutral Ruthenium(II)-Catalyzed Enol-Directed Arene C-H Alkylation with Maleimides. Org Lett 2023; 25:70-75. [PMID: 36579895 DOI: 10.1021/acs.orglett.2c03858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An enol-assisted regioselective arene C-H alkylation with maleimides is developed under redox-neutral ruthenium(II) catalysis, offering a wide variety of valuable 3-aryl succinimides including amino acid embedded frameworks in good to excellent yields. The products were also aromatized to produce synthetically useful resorcinol-based biaryls. Mechanistic studies support an organometallic pathway with a reversible C-H metalation step for this reaction.
Collapse
Affiliation(s)
- Sudeshna Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ratnadeep Bera
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Deepan Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
9
|
Das B, Dahiya A, Sahoo AK, Patel BK. Transformable Transient Directing Group-Assisted C(sp 2)–H Activation: Synthesis and Late-Stage Functionalizations of o-Alkenylanilines. J Org Chem 2022; 87:13383-13388. [DOI: 10.1021/acs.joc.2c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
10
|
Dethe DH, Beeralingappa NC, Siddiqui SA, Chavan PN. Asymmetric Ru/Cinchonine Dual Catalysis for the One-Pot Synthesis of Optically Active Phthalides from Benzoic Acids and Acrylates. J Org Chem 2022; 87:4617-4630. [PMID: 35266689 DOI: 10.1021/acs.joc.1c02961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, we report the asymmetric Ru/cinchonine dual catalysis that provides straightforward access to enantioselective synthesis of C-3 substituted phthalides via tandem C-H activation/Michael addition cascade. The use of readily accessible and less expensive [RuCl2(p-cym)]2 and cinchonine catalyst for the one-pot assembly of chiral phthalides greatly overcomes the present trend of using highly sophisticated catalysts. The developed method provides access to both enantiomers of a product using pseudoenantiomeric cinchona alkaloids as catalysts streamlining the synthesis of phthalide in both the optically active forms.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Salman A Siddiqui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prakash N Chavan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
11
|
Wang WK, Tan HR, Wang NN, Ruan HL, Zhao SY. Copper(I)-Catalyzed Direct Oxidative Annulation of 1,3-Dicarbonyl Compounds with Maleimides: Access to Polysubstituted Dihydrofuran Derivatives. J Org Chem 2022; 87:2711-2720. [PMID: 35018783 DOI: 10.1021/acs.joc.1c02648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An efficient annulation method for the synthesis of polysubstituted dihydrofurans from 1,3-dicarbonyl compounds and maleimides is described. The reactions can afford furo[2,3-c]pyrrole derivatives with satisfactory yields. The developed strategy realizes the direct oxidative double C(sp3)-H functionalization in the presence of copper(I) salts and 2-(tert-butylperoxy)-2-methylpropane. Meanwhile, this protocol features a mild reaction condition and simple catalytic system. A reaction mechanism involving a single electron oxidation is also proposed.
Collapse
Affiliation(s)
- Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Hong-Ru Tan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Ning-Ning Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Hong-Li Ruan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| |
Collapse
|