1
|
Ahrweiler E, Selmani A, Schoenebeck F. Base-Catalyzed Remote Hydrogermylation of Olefins. Angew Chem Int Ed Engl 2025; 64:e202503573. [PMID: 40080055 DOI: 10.1002/anie.202503573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Although remote functionalization has emerged as a powerful strategy for modifying unactivated sites that are traditionally challenging to functionalize, there has been no remote hydrogermylation known to date. This work reports the first remote hydrogermylation of alkenes, achieved through a rare base-catalyzed approach-completely free of added transition metal catalysts. The methodology is operationally simple, versatile, and capable of achieving up to 8-carbon chain walks, overcoming the previous two-carbon limit of base-mediated processes.
Collapse
Affiliation(s)
- Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
2
|
Kumar Ghosh A, Mondal A, Neogi S, Mahato F, Bhunya S, Roy L, Hajra A. Copper-Catalyzed Carbogermylation of Electron-Deficient Alkenes via 3,4- Difunctionalization of Quinoxalin-2(1H)-ones: Mechanistic Insights from Computational Studies. Chemistry 2025; 31:e202404186. [PMID: 40050965 DOI: 10.1002/chem.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Indexed: 03/18/2025]
Abstract
Herein, we disclosed a copper-catalyzed carbogermylation of alkenes through 3,4-difunctionalization of quinoxalin-2(1H)-one to afford 3-oxo-3,4-dihydroquinoxaline 1-oxide incorporated organogermanium derivatives. Despite extensive research on the C-H functionalization of quinoxaline-2(1H)-one, the difunctionalization of this compound through C-C and N-O bond formation via the radical relay process is unusual. DFT calculation and mechanistic studies reveal that the reaction follows a radical pathway.
Collapse
Affiliation(s)
- Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Amit Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Sukanya Neogi
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Frenki Mahato
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sourav Bhunya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Lisa Roy
- Department of Education, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
3
|
Mahato F, Ghosh AK, Hajra A. Cu(I)-Catalyzed Silylation and Germylation of Azauracils. Chemistry 2025; 31:e202403685. [PMID: 39499055 DOI: 10.1002/chem.202403685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024]
Abstract
The current study demonstrates a Cu(I) catalyzed direct C(sp2)-H silylation and germylation of azauracil using triphenylsilane and triphenylgermane. A broad scope, excellent functional group tolerance, and suitability for large-scale reactions are exhibited in this protocol. Moreover, this method can be readily applied to structurally complex bioactive molecules. Experimental results suggest a radical mechanistic pathway for the reaction.
Collapse
Affiliation(s)
- Frenki Mahato
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|
4
|
Lu XY, Qian YJ, Sun HL, Su MX, Wang ZZ, Jiang F, Zhou XY, Sun YX, Shi WL, Wan JR. Photoinduced decarboxylative germylation of α-fluoroacrylic acids: access to germylated monofluoroalkenes. Chem Commun (Camb) 2024; 60:6556-6559. [PMID: 38845407 DOI: 10.1039/d4cc02037e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Herein, a novel strategy is presented for the photoinduced decarboxylative and dehydrogenative cross-coupling of a wide range of α-fluoroacrylic acids with hydrogermanes. This methodology provides an efficient and robust approach for producing various germylated monofluoroalkenes with excellent stereoselectivity within a brief photoirradiation period. The feasibility of this reaction has been demonstrated through gram-scale reaction, conversion of germylated monofluoroalkenes, and modification of complex organic molecules.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Yu-Jun Qian
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Hai-Lun Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Meng-Xue Su
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Zi-Zhen Wang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Fan Jiang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Xin-Yue Zhou
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Yan-Xi Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Wan-Li Shi
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Ji-Ru Wan
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| |
Collapse
|
5
|
Rogova T, Ahrweiler E, Schoetz MD, Schoenebeck F. Recent Developments with Organogermanes: their Preparation and Application in Synthesis and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314709. [PMID: 37899306 DOI: 10.1002/anie.202314709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
Within the sphere of traditional Pd0 /PdII cross coupling reactions, organogermanes have been historically outperformed both in terms of scope and reactivity by more conventional transmetalating reagents. Subsequently, this class of compounds has been largely underutilized as a coupling partner in bond-forming strategies. Most recent studies, however, have shown that alternative modes of activation of these notoriously robust building blocks transform organogermanes into the most reactive site of the molecule-capable of outcompeting other functional groups (such as boronic acids, esters and silanes) for both C-C and C-heteroatom bond formation. As a result, over the past few years, the literature has increasingly featured methodologies that explore the potential of organogermanes as chemoselective and orthogonal coupling partners. Herein we highlight some of these recent advances in the field of organogermane chemistry both with respect to their synthesis and applications in synthetic and catalytic transformations.
Collapse
Affiliation(s)
- Tatiana Rogova
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
6
|
Dahiya A, Gevondian AG, Selmani A, Schoenebeck F. Site-Selective Nitration of Aryl Germanes at Room Temperature. Org Lett 2023; 25:7209-7213. [PMID: 37751597 PMCID: PMC11325643 DOI: 10.1021/acs.orglett.3c02822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
We report a site-selective ipso-nitration of aryl germanes in the presence of boronic esters, silanes, halogens, and additional functionalities. The protocol is characterized by operational simplicity, proceeds at room temperature, and is enabled by [Ru(bpy)3](PF6)2/blue light photocatalysis. Owing to the exquisite robustness of the [Ge] functionality, nitrations of alternative functional handles in the presence of the germane are also feasible, as showcased herein.
Collapse
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Avetik G Gevondian
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
7
|
Kaithal A, Sasmal HS, Dutta S, Schäfer F, Schlichter L, Glorius F. cis-Selective Hydrogenation of Aryl Germanes: A Direct Approach to Access Saturated Carbo- and Heterocyclic Germanes. J Am Chem Soc 2023; 145:4109-4118. [PMID: 36781169 PMCID: PMC9951224 DOI: 10.1021/jacs.2c12062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 02/15/2023]
Abstract
A catalytic approach of synthesizing the cis-selective saturated carbo- and heterocyclic germanium compounds (3D framework) is reported via the hydrogenation of readily accessible aromatic germanes (2D framework). Among the numerous catalysts tested, Nishimura's catalyst (Rh2O3/PtO2·H2O) exhibited the best hydrogenation reactivity with an isolated yield of up to 96%. A broad range of substrates including the synthesis of unprecedented saturated heterocyclic germanes was explored. This selective hydrogenation strategy could tolerate several functional groups such as -CF3, -OR, -F, -Bpin, and -SiR3 groups. The synthesized products demonstrated the applications in coupling reactions including the newly developed strategy of aza-Giese-type addition reaction (C-N bond formation) from the saturated cyclic germane product. These versatile motifs can have a substantial value in organic synthesis and medicinal chemistry as they show orthogonal reactivity in coupling reactions while competing with other coupling partners such as boranes or silanes, acquiring a three-dimensional structure with high stability and robustness.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Himadri Sekhar Sasmal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Felix Schäfer
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Lisa Schlichter
- Westfälische
Wilhelms-Universität Münster, Center for Soft Nanoscience
(SoN) and Organisch-Chemisches Institut, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
8
|
Bloux H, Dahiya A, Hébert A, Fabis F, Schoenebeck F, Cailly T. Base-Mediated Radio-Iodination of Arenes by Using Organosilane and Organogermane as Radiolabelling Precursors. Chemistry 2023; 29:e202203366. [PMID: 36607172 DOI: 10.1002/chem.202203366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
The radio-iodination of arenes is investigated from organosilane and organogermane precursors using ipso-electrophilic halogenation (IEH). Discovery of a mild base mediated process allows radio-iodination in HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) of either aryl silane or germane, with germanes being more reactive. Clinical potential of arylgermanes as radio-iodination precursors is demonstrated through the labelling of [125 I]IMTO (iodometomidate) and [125 I]MIBG (meta-iodobenzylguanidine) thus offering an alternative to radio-iododestannylation processes using non-toxic precursors.
Collapse
Affiliation(s)
- Hugo Bloux
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Alexandra Hébert
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Frédéric Fabis
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Cailly
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France.,IMOGERE, Normandie Univ, UNICAEN, 14000, Caen, France.,Department of Nuclear Medicine, CHU Côte de Nacre, 14000, Caen, France.,Institut Blood and Brain @Caen-Normandie (BB@C), Boulevard Henri Becquerel, 14074, Caen, France
| |
Collapse
|
9
|
Yuan Y, Gu Y, Wang YE, Zheng J, Ji J, Xiong D, Xue F, Mao J. One-Pot Rapid Access to Benzyl Silanes, Germanes, and Stannanes from Toluenes Mediated by a LiN(SiMe 3) 2/CsCl System. J Org Chem 2022; 87:13907-13918. [DOI: 10.1021/acs.joc.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaqi Yuan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yuanyun Gu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiaying Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
10
|
Wu CY, He C, Chen XL, Tang BC, Yu ZC, Wang HY, Wu YD, Wu AX. Pd-Catalyzed Hydroxyl-Directed Cascade Hydroarylation/C-H Germylation of Nonterminal Alkenes and Aryl Iodides. J Org Chem 2022; 87:9184-9196. [PMID: 35758885 DOI: 10.1021/acs.joc.2c00927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pd-catalyzed cascade hydroarylation and C-H germylation of nonterminal alkenes and aryl iodides enabled by hydroxyl assistance have been developed. The key step in this C-H germylation cascade is the formation of a highly reactive oxo-palladacycle intermediate, which markedly restrained the β-H elimination process. Mechanistically, control experiments indicated that the hydroxyl group played an important role in this process. This transformation shows excellent reactivity and selectivity for most substrates investigated.
Collapse
Affiliation(s)
- Chun-Yan Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cai He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huai-Yu Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
11
|
Kreisel T, Mendel M, Queen AE, Deckers K, Hupperich D, Riegger J, Fricke C, Schoenebeck F. Modular Generation of (Iodinated) Polyarenes Using Triethylgermane as Orthogonal Masking Group. Angew Chem Int Ed Engl 2022; 61:e202201475. [PMID: 35263493 PMCID: PMC9314983 DOI: 10.1002/anie.202201475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 02/06/2023]
Abstract
While the modular construction of molecules from suitable building blocks is a powerful means to more rapidly generate a diversity of molecules than through customized syntheses, the further evolution of the underlying coupling methodology is key to realize widespread applications. We herein disclose a complementary modular coupling approach to the widely employed Suzuki coupling strategy of boron containing precursors, which relies on organogermane containing building blocks as key orthogonal functionality and an electrophilic (rather than nucleophilic) unmasking event paired with air-stable PdI dimer based bond construction. This allows to significantly shorten the reaction times for the iterative coupling steps and/or to close gaps in the accessible compound space, enabling straightforward access also to iodinated compounds.
Collapse
Affiliation(s)
- Tatjana Kreisel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Marvin Mendel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Adele E. Queen
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Kristina Deckers
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Daniel Hupperich
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Julian Riegger
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Christoph Fricke
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
12
|
Dahiya A, Schoenebeck F. Direct C-H Dehydrogenative Germylation of Terminal Alkynes with Hydrogermanes. Org Lett 2022; 24:2728-2732. [PMID: 35364815 DOI: 10.1021/acs.orglett.2c00840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A direct C(sp)-H germylation of terminal alkynes with triethyl germanium hydride is reported. The method is operationally simple and makes use of B(C6F5)3 catalysis in combination with 2,6-lutidine as an organic base. Exclusive selectivity for dehydrogenative germylation of the alkyne over the competing hydrogermylation is observed.
Collapse
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
13
|
Kreisel T, Mendel M, Queen AE, Deckers K, Hupperich D, Riegger J, Fricke C, Schoenebeck F. Modular Generation of (Iodinated) Polyarenes Using Triethylgermane as Orthogonal Masking Group. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatjana Kreisel
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Marvin Mendel
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Adele E. Queen
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Kristina Deckers
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Daniel Hupperich
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Julian Riegger
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christoph Fricke
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|