1
|
Yang YC, Li WS, Wu HL. Rhodium(I)-Catalyzed Asymmetric Cascade Reactions. CHEM REC 2025; 25:e202400231. [PMID: 40051168 DOI: 10.1002/tcr.202400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/12/2025] [Indexed: 04/13/2025]
Abstract
Rhodium(I)-catalyzed asymmetric cascade reactions have emerged as powerful tools in contemporary organic synthesis, enabling efficient construction of complex molecular architectures. These transformations proceed through organorhodium intermediates, which undergo additions to reactive π-bonds, subsequently triggering cascade reactions with neighboring functional groups to effectively forge multiple carbon-carbon bonds and stereogenic centers in a single step under mild conditions. This article reviews the pioneering developments and recent breakthroughs from 2002 to 2024, highlighting the attractive advantages of rhodium(I)-catalyzed asymmetric cascade reactions and their profound impacts on synthetic organic chemistry.
Collapse
Affiliation(s)
- Yu-Chu Yang
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| |
Collapse
|
2
|
Sun C, Qi T, Rahman FU, Hayashi T, Ming J. Ligand-controlled regiodivergent arylation of aryl(alkyl)alkynes and asymmetric synthesis of axially chiral 9-alkylidene-9,10-dihydroanthracenes. Nat Commun 2024; 15:9307. [PMID: 39468097 PMCID: PMC11519556 DOI: 10.1038/s41467-024-53767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Transition metal-catalyzed addition of organometallics to aryl(alkyl)alkynes has been well known to proceed with the regioselectivity in forming a carbon-carbon bond at the alkyl-substituted carbon (β-addition). Herein, the reverse regiochemistry with high selectivity in giving 1,1-diarylalkenes (α-addition) was realized in the reaction of arylboronic acids with aryl(alkyl)alkynes by use of a rhodium catalyst coordinated with a chiral diene ligand, whereas the arylation of the same alkynes proceeded with the usual regioselectivity (β-addition) in the presence of a rhodium/DM-BINAP catalyst. The regioselectivity can be switched by the choice of ligands on the rhodium catalysts. This reverse regioselectivity also enabled the catalytic asymmetric synthesis of phoenix-like axially chiral alkylidene dihydroanthracenes with high enantioselectivity through an α-addition/1,4-migration/cyclization sequence.
Collapse
Affiliation(s)
- Chao Sun
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Ting Qi
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Faiz-Ur Rahman
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Tamio Hayashi
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
| |
Collapse
|
3
|
Abstract
Asymmetric catalysis has emerged as a general and powerful approach for constructing chiral compounds in an enantioselective manner. Hence, developing novel chiral ligands and catalysts that can effectively induce asymmetry in reactions is crucial in modern chemical synthesis. Among such chiral ligands and catalysts, chiral dienes and their metal complexes have received increased attention, and a great progress has been made over the past two decades. This review provides comprehensive and critical information on the essential aspects of chiral diene ligands and their importance in asymmetric catalysis. The literature covered ranges from August 2003 (when the first effective chiral diene ligand for asymmetric catalysis was reported) to October 2021. This review is divided into two parts. In the first part, the chiral diene ligands are categorized according to their structures, and their preparation methods are summarized. In the second part, their applications in asymmetric transformations are presented according to the reaction types.
Collapse
Affiliation(s)
- Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Gillbard SM, Lam HW. Nickel-Catalyzed Arylative Cyclizations of Alkyne- and Allene-Tethered Electrophiles using Arylboron Reagents. Chemistry 2022; 28:e202104230. [PMID: 34986277 PMCID: PMC9302687 DOI: 10.1002/chem.202104230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/14/2022]
Abstract
The use of arylboron reagents in metal‐catalyzed domino addition–cyclization reactions is a well‐established strategy for the preparation of diverse, highly functionalized carbo‐ and heterocyclic products. Although rhodium‐ and palladium‐based catalysts have been commonly used for these reactions, more recent work has demonstrated nickel catalysis is also highly effective, in many cases offering unique reactivity and access to products that might otherwise not be readily available. This review gives an overview of nickel‐catalyzed arylative cyclizations of alkyne‐ and allene‐tethered electrophiles using arylboron reagents. The scope of the reactions is discussed in detail, and general mechanistic concepts underpinning the processes are described.
Collapse
Affiliation(s)
- Simone M Gillbard
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
5
|
Crawford ET, Smith KL, Johnson JS. Dearomative Synthesis of Chiral Dienes Enables Improved Late-Stage Ligand Diversification. Org Lett 2022; 24:1791-1795. [PMID: 35238202 DOI: 10.1021/acs.orglett.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient synthesis of chiral nonracemic diene ligands is facilitated by an enantioselective dearomative intermolecular arene cyclopropanation of anisole. The functionality of the resulting cycloheptatriene engenders distinct chemical environments in a downstream tricyclic bis(enol) triflate that permits selective late-stage functionalization. The synthesis of diverse C1- and pseudo-C2-symmetric dienes is therefore viable by iterative palladium-catalyzed cross-coupling reactions. The ligands provide moderate to high selectivities in known Rh(I)-mediated asymmetric transformations.
Collapse
Affiliation(s)
- Evan T Crawford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799-3290, United States
| | - Kendrick L Smith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 25799-3290, United States
| |
Collapse
|
6
|
Qiao Y, Bai S, Wu XF, Yang Y, Meng H, Ming J. Rhodium-Catalyzed Desymmetric Arylation of γ,γ-Disubsituted Cyclohexadienones: Asymmetric Synthesis of Chiral All-Carbon Quaternary Centers. Org Lett 2022; 24:1556-1560. [PMID: 35142218 DOI: 10.1021/acs.orglett.2c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The desymmetric arylation of prochiral cyclohexadienones with ArZnCl in the presence of an (R)-segphos-rhodium catalyst gave high yields of the corresponding cyclohexenones, which contain a chiral arylated carbon center at the β-position and a chiral all-carbon quaternary center at the γ-position, with high diastereo- and enantioselectivities. This catalytic system was also applied to the arylation of spirocarbocyclic cyclohexadienones and afforded the corresponding cyclohexenones bearing a chiral spiro quaternary carbon with high dr and ee.
Collapse
Affiliation(s)
- Yu Qiao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shiming Bai
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Xiao-Feng Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Ying Yang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - He Meng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|