1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Hu MC, Zhou HT, Fang YC, Zhang LR, Cui BD, Chen YZ, Bai M. In situ generated CF 3CHN 2 with 3-ylideneoxindoles to access CF 3-containing pyrazolo[1,5- c]quinazolines derivatives. RSC Adv 2024; 14:36410-36415. [PMID: 39545173 PMCID: PMC11562030 DOI: 10.1039/d4ra06651k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Toward a selective and facile method for the synthesis of CF3-containing pyrazolo[1,5-c]quinazolines, we developed a [3 + 2] cycloaddition/1,3-H shift/rearrangement/dehydrogenation cascade involving in situ generated CF3CHN2 and 3-ylideneoxindoles with DBU as a base. The reaction is distinguished by its mild conditions, metal-free process, operational simplicity, and broad functional group tolerance, thus presenting a convenient protocol for the construction of pyrazolo[1,5-c]quinazolines that are of interest in medicinal chemistry.
Collapse
Affiliation(s)
- Ming-Cheng Hu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Hai-Tao Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Yu-Chen Fang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Li-Ren Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563000 China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563000 China
| | - Mei Bai
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563000 China
| |
Collapse
|
3
|
Moussa Z, Ramanathan M, Alharmoozi SM, Alkaabi SAS, Al Aryani SHM, Ahmed SA, Al-Masri HT. Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon 2024; 10:e38894. [PMID: 39492900 PMCID: PMC11531639 DOI: 10.1016/j.heliyon.2024.e38894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Aza-heterocyclic scaffolds are privileged cores in the composition of their potential therapeutic profiles and versatile synthetic intermediates. Pyrazole is one of the frequently studied compounds of "azole" family and consists of nitrogen in a 1,2 linking sequence. These motifs possess a wide-spectrum of applications in the field of pharmaceuticals, agrochemicals, polymer chemistry, cosmetics, food industries and more. In addition, functionalized pyrazole derivatives are frequently used as ligands in coordination chemistry and metal-catalysed reactions. As exemplified by numerous recent reports, pyrazoles are highly promising pharmacophores with excellent therapeutic applications. Owing to their aromaticity, the ring structures have many reactive positions, where electrophilic, nucleophilic, alkylation and oxidative reactions might occur. The structural adroitness and diversity of pyrazole cores further emanated numerous fused bicyclic skeletons with various biological applications. In this review, we highlight the recent synthetic methods developed for the preparation of functionalized pyrazole derivatives (From 2017 to present). In addition, we have also covered the notable biological activities (anti-cancer, anti-inflammatory, anti-bacterial and anti-viral) of this ubiquitous core. Herein, we emphasised the synthesis of pyrazoles from variety of precursors such as, alkynes, α,β-unsaturated carbonyl compounds, diazo reagents, nitrile imines, diazonium salts, 1,3-dicarbonyl compounds and etc. Moreover, the recent synthetic methodologies focusing on the preparation of pyrazolines and pyrazolones and variously fused-pyrazoles are also included. Authors expect this review could significantly help the researchers in finding elegant novel tools to synthesize pyrazole skeletons and expand their biological evaluation.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Mani Ramanathan
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shaikha Mohammad Alharmoozi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shahad Ali Saeed Alkaabi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | | | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P. O. Box 130040, Mafraq, 25113, Jordan
| |
Collapse
|
4
|
Liu Y, Tian Q, Ge J, Wu X, Li Z, Cheng G. Recent advances in the synthesis of trifluoromethyl-containing heterocyclic compounds via trifluoromethyl building blocks. Org Biomol Chem 2024; 22:6246-6276. [PMID: 39041070 DOI: 10.1039/d4ob00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Trifluoromethylated heterocyclic compounds have played an increasingly significant role in pharmaceuticals, agrochemicals, and materials. This is because the introduction of trifluoromethyl could enhance the lipophilicity, metabolic stability, and pharmacokinetic properties of heterocyclic drug molecules. Therefore, the synthesis of trifluoromethylated heterocyclics has become a major subject of research. The construction of trifluoromethylated heterocyclics via the annulation of trifluoromethyl building blocks with suitable partners has been proved to be a powerful strategy. In this review, we systematically summarize and discuss recent advances in the preparation of trifluoromethyl-containing heterocyclics via trifluoromethyl building block strategies over the period from 2019 to the present.
Collapse
Affiliation(s)
- Yaopeng Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Jin Ge
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Xi Wu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Zhenghao Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
5
|
Du Y, Mei H, Makarem A, Javahershenas R, Soloshonok VA, Han J. Copper-catalyzed multicomponent reaction of β-trifluoromethyl β-diazo esters enabling the synthesis of β-trifluoromethyl N, N-diacyl-β-amino esters. Beilstein J Org Chem 2024; 20:212-219. [PMID: 38318462 PMCID: PMC10840549 DOI: 10.3762/bjoc.20.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
An efficient multicomponent reaction of newly designed β-trifluoromethyl β-diazo esters, acetonitrile, and carboxylic acids via an interrupted esterification process under copper-catalyzed conditions has been developed, which affords various unsymmetrical β-trifluoromethyl N,N-diacyl-β-amino esters in good to excellent yields. The reaction features mild conditions, a wide scope of β-amino esters and carboxylic acids, and also applicability to large-scale synthesis, thus providing an efficient way for the synthesis of β-trifluoromethyl β-diacylamino esters. Furthermore, this reaction represents the first example of a Mumm rearrangement of β-trifluoromethyl β-diazo esters.
Collapse
Affiliation(s)
- Youlong Du
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ata Makarem
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Gao CF, Chen YJ, Nie J, Zhang FG, Cheung CW, Ma JA. Synthesis of di/trifluoromethyl cyclopropane-dicarbonitriles via [2+1] annulation of fluoro-based diazoethanes with (alkylidene)malononitriles. Chem Commun (Camb) 2023; 59:11664-11667. [PMID: 37695256 DOI: 10.1039/d3cc03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Herein, we describe a [2+1] annulation reaction of di/trifluorodiazoethane with (alkylidene)malononitriles. This protocol offers a streamlined synthesis of a wide range of stereospecific and densely functionalized difluoromethyl and trifluoromethyl cyclopropane-1,1-dicarbonitriles. Further functional group interconversions or skeletal elaborations afford structurally distinct cyclopropyl variants.
Collapse
Affiliation(s)
- Cheng-Feng Gao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Yue-Ji Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
7
|
Altarejos J, Merino E, Sucunza D, Vaquero JJ, Carreras J. One-Pot (3 + 2) Cycloaddition-Isomerization-Oxidation of 2,2,2-Trifluorodiazoethane and Styryl Derivatives. J Org Chem 2023; 88:11258-11262. [PMID: 37478336 PMCID: PMC10407847 DOI: 10.1021/acs.joc.3c00396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 07/23/2023]
Abstract
A facile access to 5-aryl-3-trifluoromethylpyrazoles has been developed by a one-pot (3 + 2) cycloaddition-isomerization-oxidation sequence employing 2,2,2-trifluorodiazoethane and styryl derivatives. A broad variety of functional groups and good yields are achieved under mild conditions. Additionally, the functionalization of 3-trifluoromethylpyrazoles was studied. DFT calculations of the cycloaddition transition state energies are consistent with the experimentally observed reactivity.
Collapse
Affiliation(s)
- Julia Altarejos
- Universidad
de Alcalá, Departamento de Química
Orgánica y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), 28805, Alcala de
Henares, Madrid, Spain
- Instituto
Ramón y Cajal de Investigación Sanitaria (IRYCIS) 28034, Madrid, Spain
| | - Estíbaliz Merino
- Universidad
de Alcalá, Departamento de Química
Orgánica y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), 28805, Alcala de
Henares, Madrid, Spain
- Instituto
Ramón y Cajal de Investigación Sanitaria (IRYCIS) 28034, Madrid, Spain
| | - David Sucunza
- Universidad
de Alcalá, Departamento de Química
Orgánica y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), 28805, Alcala de
Henares, Madrid, Spain
- Instituto
Ramón y Cajal de Investigación Sanitaria (IRYCIS) 28034, Madrid, Spain
| | - Juan J. Vaquero
- Universidad
de Alcalá, Departamento de Química
Orgánica y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), 28805, Alcala de
Henares, Madrid, Spain
- Instituto
Ramón y Cajal de Investigación Sanitaria (IRYCIS) 28034, Madrid, Spain
| | - Javier Carreras
- Universidad
de Alcalá, Departamento de Química
Orgánica y Química Inorgánica, Instituto de Investigación
Química “Andrés M. del Río” (IQAR), 28805, Alcala de
Henares, Madrid, Spain
- Instituto
Ramón y Cajal de Investigación Sanitaria (IRYCIS) 28034, Madrid, Spain
| |
Collapse
|
8
|
Chen YJ, Zheng J, Ma JA, Zhang FG. Radical-initiated diazo-retaining nucleophilic addition reaction of trifluorodiazoethane and diazoacetate with 2H‑azirines. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Zou X, Zheng L, Zhuo X, Zhong Y, Wu Y, Yang B, He Q, Guo W. Copper-Promoted Aerobic Oxidative [3+2] Cycloaddition Reactions of N,N-Disubstituted Hydrazines with Alkynoates: Access to Substituted Pyrazoles. J Org Chem 2023; 88:2190-2206. [PMID: 36724037 DOI: 10.1021/acs.joc.2c02610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A copper-promoted aerobic oxidative [3+2] cycloaddition reaction for the synthesis of various substituted pyrazoles from N,N-disubstituted hydrazines with alkynoates in the presence of bases is developed. This work involves a direct C(sp3)-H functionalization and the formation of new C-C/C-N bonds. In this strategy, inexpensive and easily available Cu2O serves as the promoter and air acts as the green oxidant. The reaction exhibits the advantages of high atom and step economy, high regioselectivity, and easy operation.
Collapse
Affiliation(s)
- Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yingying Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Beining Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Qifang He
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
10
|
Synthesis of novel isoxazole-containing pyrazolines and pyrazoles via cycloaddition and elimination/aromatization process. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Chen S, You B, Zhang T, Li M, Gu Y. Diversity-Oriented Metal-Free Synthesis of Nitrogen-Containing Heterocycles Using Atropaldehyde Acetals as a Dual C3/C2-Synthon. CHEMSUSCHEM 2022; 15:e202201301. [PMID: 35909080 DOI: 10.1002/cssc.202201301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A highly efficient and elegant diversity-oriented reaction paradigm employing atropaldehyde acetals as new dual C2/C3 synthons was developed under metal-free conditions using glycine esters as the counterpart reagents, which allowed rapid synthesis of two important nitrogen-containing heterocycles, pyrrolo[1,2-a]quinolines and 3,5-diarylpyridines. The divergent products are subtly controlled by the manipulation of the substitutional groups of glycine esters. When a N-arylglycine ester was used, pyrrolo[1,2-a]quinolines can be formed through cascade oxidative C-C cleavage/multiple cyclization. Instead, N-benzylglycine ester as the counter-reagent led to the synthesis of 3,5-diarylpyridines via two key C-N cleavages. Mild conditions, broad substrate scope, scalability and environmentally acceptable organic solvents rendered this method practical and attractive.
Collapse
Affiliation(s)
- Shaomin Chen
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bo You
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianjian Zhang
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Minghao Li
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanlong Gu
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832004, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou, 730000, P. R. China
| |
Collapse
|
12
|
Recent advances in the synthesis of fluoroalkylated compounds using fluoroalkyl anhydrides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Copper-catalyzed reaction of alkyl trifluoromethyl diazoalkane for the synthesis of trifluoromethyl allenes. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Wang N, Qiao Y, Du Y, Mei H, Han J. Assembly of trifluoromethylated fused tricyclic pyrazoles via cyclization of β-amino cyclic ketones. Org Biomol Chem 2022; 20:7467-7471. [PMID: 36102007 DOI: 10.1039/d2ob01391f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused polycyclic pyrazoles are an important class of heterocyclic compounds; thus, the development of efficient methods for their preparation becomes highly urgent. Herein, we reported an efficient method for the synthesis of trifluoromethylated fused tricyclic pyrazoles via intramolecular cyclization of cyclic ketone-derived amines. Mechanistic studies provide evidence for the in situ generation of trifluoromethylated β-diazo ketones as intermediates via diazotization with the use of tert-butyl nitrite. The synthetic utility of this method is highlighted by scale-up synthesis and the derivatization of the obtained fused tricyclic pyrazole products.
Collapse
Affiliation(s)
- Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiming Qiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Youlong Du
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
15
|
He J, Liu Y, Feng Y, Li X, Liu P, Dai B. Cs 2CO 3-Promoted [3 + 2] Cyclization of Chalcone and N-Tosylhydrazone. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2078845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jing He
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Yali Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Yijiao Feng
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Xuezhen Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Ping Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| |
Collapse
|
16
|
Mei H, Wang N, Li Z, Han J. Intramolecular Appel Reaction of Trifluoromethylated β-Keto Diazos Enabling Assembly of Trifluoromethylpyrazoles. Org Lett 2022; 24:2258-2263. [PMID: 35297254 DOI: 10.1021/acs.orglett.2c00738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for the generation of trifluoromethylated β-keto diazos and their applications in intramolecular Appel type reactions are reported. The key success of this reaction is a diazo species as an N-nucleophile in Appel reactions. This reaction is conducted under mild conditions and has a broad substrate scope, affording trifluoromethylpyrazoles in ≤94% yields. This protocol represents a new type of Appel reaction and also a new reaction mode of fluoro diazoalkanes.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ziyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
Cao S, Tang T, Li J, He Z. Visible light-driven [3 + 3] annulation reaction of 2 H-azirines with Huisgen zwitterions and synthesis of 1,2,4-triazines. Org Chem Front 2022. [DOI: 10.1039/d2qo00564f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-driven [3 + 3] annulation reaction of 2H-azirines with Huisgen zwitterions is developed for the first time.
Collapse
Affiliation(s)
- Shixuan Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tong Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiatian Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhengjie He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
18
|
Shen M, Li H, Zhang X, Fan X. Rh( iii)-catalyzed simultaneous [3 + 3]/[5 + 1] annulation of 1-arylpyrazolidinones with gem-difluorocyclopropenes leading to fluorinated pyridopyrimidinone derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01230h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is an efficient and concise synthesis of fluorinated pyridopyrimidinone derivatives through formal [3 + 3]/[5 + 1] annulation of 1-arylpyrazolidinones with gem-difluorocyclopropenes.
Collapse
Affiliation(s)
- Mengyang Shen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
19
|
Kumar A, Khan WA, Ahamad S, Mohanan K. Trifluorodiazoethane: A versatile building block to access trifluoromethylated heterocycles. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anuj Kumar
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Lucknow India
| | | | - Shakir Ahamad
- Department of Chemistry Aligarh Muslim University Aligarh India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Lucknow India
- Medicinal and Process Chemistry Division Academy of Scientific and Innovative Research Ghaziabad India
| |
Collapse
|
20
|
Shi HS, Li SH, Zhang FG, Ma JA. Catalytic regioselective construction of phenylthio- and phenoxyldifluoroalkyl tetrazoles from difluorodiazoketones. Chem Commun (Camb) 2021; 57:13744-13747. [PMID: 34851338 DOI: 10.1039/d1cc05890h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we report the design and synthesis of two new difluoro-diazoketone reagents (difluorophenylthiol diazoketone and difluorophenoxyl diazoketone) and their [3+2] cycloaddition reactions with aryldiazonium salts under silver catalysis conditions. This protocol enables regioselective access to a broad scope of difluorophenylthiol- and difluorophenoxyl-substituted tetrazole-carbinols in a one-pot operation. Further synthetic derivatizations including dephenylthiolation and unexpected phenylthiol group migration/fluorination allow the efficient preparation of α-difluoromethyl tetrazole-carbinols and α-trifluoromethyl tetrazole-thioethers.
Collapse
Affiliation(s)
- Hong-Song Shi
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| | - Shuo-Han Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| |
Collapse
|
21
|
Guo H, Tian L, Liu Y, Wan JP. DMSO as a C 1 Source for [2 + 2 + 1] Pyrazole Ring Construction via Metal-Free Annulation with Enaminones and Hydrazines. Org Lett 2021; 24:228-233. [PMID: 34908420 DOI: 10.1021/acs.orglett.1c03879] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A cascade reaction between enaminones, hydrazines, and dimethyl sulfoxide (DMSO) for the synthesis of 1,4-disubstituted pyrazoles catalyzed by molecular iodine in the presence of Selectfluor has been realized. DMSO plays a dual role as the C1 source and the reaction medium. In addition, the synthesis of 1,3,4-trisubstituted pyrazoles using aldehydes as alternative C1 building blocks has also been achieved.
Collapse
Affiliation(s)
- Haijin Guo
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Lihong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
22
|
Rhodium-Catalyzed C-H Annulation of Free Anilines with Vinylene Carbonate as a Bifunctional Synthon. Org Lett 2021; 23:8910-8915. [PMID: 34757750 DOI: 10.1021/acs.orglett.1c03404] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemical transformation with vinylene carbonate as an emerging synthetic unit has recently attracted considerable attention. This report is a novel conversion pattern with vinylene carbonate, in which such a vibrant reagent unprecedentedly acts as a difunctional coupling partner to complete the C-H annulation of free anilines. From commercially available substrates, this protocol leads to the rapid construction of synthetically versatile 2-methylquinoline derivatives (43 examples) with excellent functionality tolerance.
Collapse
|