1
|
Luo Q, Xie ZB, Jian C, Yang KR, Huang K, Yan SJ. Fe-Catalyzed Radical Trifluoromethylation and Cyclization of Ortho-Vinyl Enaminones with 1-(Trifluoromethyl)-1,3-benzo-[ d][1,2]iodaoxol-3(1 H)-one to Construct Functionalized Quinolines. J Org Chem 2025. [PMID: 40387627 DOI: 10.1021/acs.joc.5c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Herein, we present a protocol for the construction of functionalized quinolines, i.e., 3-acyl-4-(2,2,2-trifluoro-ethyl)quinolines (ATFQLs) 4, from ortho-vinyl enaminones and 1-(trifluoromethyl)-1,3-benzo-[d][1,2]-iodaoxol-3(1H)-one, which was catalyzed by FeCp2 and promoted by FeCl3 (Lewis acid) additives in solvents (i.e., acetonitrile and toluene). This strategy first utilized the FeCp2-catalyzed functionalization of alkenes with trifluoromethyl radicals. The intermediate formed was captured by the ortho-iodobenzoate substrate, yielding intermediate 3, which then underwent the FeCl3-catalyzed elimination of ortho-iodobenzoate at a higher temperature to form an α,β-unsaturated intermediate. The subsequent intramolecular Michael reaction of the intermediate yielded the final target compound 4. In summary, a series of ATFQLs 4 were synthesized through the formation of two bonds (C═C and C-C).
Collapse
Affiliation(s)
- Qin Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhi-Bo Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Cen Jian
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Kun-Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Kun Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
2
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
He H, Yan JX, Zhu JX, Liu SJ, Liu XQ, Chen P, Wang X, Jia ZJ. Enantioselective Trifluoromethylazidation of Styrenyl Olefins Catalyzed by an Engineered Nonheme Iron Enzyme. Angew Chem Int Ed Engl 2025; 64:e202423507. [PMID: 39853573 DOI: 10.1002/anie.202423507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Organofluorines, particularly those containing trifluoromethyl (CF3) groups, play a critical role in medicinal chemistry. While trifluoromethylation of alkenes provides a powerful synthetic route to construct CF3-containing compounds with broad structural and functional diversity, achieving enantioselective control in these reactions remains a formidable challenge. In this study, we engineered a nonheme iron enzyme, quercetin 2,3-dioxygenase from Bacillus subtilis (BsQueD), for the enantioselective trifluoromethylazidation of alkenes. Through directed evolution, the final variant BsQueD-CF3 exhibited excellent enantioselectivity, with an enantiomeric ratio (e.r.) of up to 98 : 2. Preliminary mechanistic studies suggest the involvement of radical intermediates. This work expands biocatalytic organofluorine chemistry by reprogramming metalloenzymes for innovative trifluoromethylation reactions.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia-Xin Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian-Xiang Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Si-Jia Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Peng Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Jun Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Zhang L, Huang Y, Hu P. Iron-Catalyzed SO 2-Retaining Smiles Rearrangement through Decarboxylation. Org Lett 2024; 26:10940-10945. [PMID: 39639825 DOI: 10.1021/acs.orglett.4c04107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Radical Smiles rearrangements have emerged as powerful methodologies for constructing carbon-carbon bonds through intramolecular radical addition and fragmentation under milder conditions, with SO2 released as a byproduct. However, SO2-retaining Smiles rearrangements, which can yield valuable alkyl sulfone derivatives, have been scarcely explored. In this study, we present an unprecedented iron-catalyzed SO2-retaining Smiles rearrangement initiated by the decarboxylation of aliphatic carboxylic acids. This approach provides a mild, cost-effective, and versatile pathway to sulfone-containing compounds, demonstrating broad substrate scope and functional group tolerance. It offers a promising strategy for synthesizing γ- and δ-aryl substituted alkyl sulfones, which are traditionally challenging to produce.
Collapse
Affiliation(s)
- Liang Zhang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yahao Huang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| |
Collapse
|
5
|
Wang P, Lin L, Huang Y, Zhang H, Liao S. Radical Fluorosulfonamidation: A Facile Access to Sulfamoyl Fluorides. Angew Chem Int Ed Engl 2024; 63:e202405944. [PMID: 38837324 DOI: 10.1002/anie.202405944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Recently, the introduction of fluorosulfonyl (-SO2F) groups have attracted considerable research interests, as this moiety could often afford enhanced activities and new functions in the context of chemical biology and drug discovery. Herein, we report the design and synthesis of 1-fluorosulfamoyl-pyridinium (FSAP) salts, which could serve as an effective photoredox-active precursor to fluorosulfamoyl radicals and enable the direct radical C-H fluorosulfonamidation of a variety of (hetero)arenes. This method features mild conditions, visible light, broad substrate scope, good group tolerance, etc., and a metal-free protocol is also viable by using organic photocatalysts. Further, FSAP can also be applied to the radical functionalization of alkenes via 1,2-difunctionalization, radical distal migration, tandem radical-polar crossover reactions, etc. In addition, a formal C-H methylamination of (hetero)arenes by combining this radical C-H fluorosulfonamidation with subsequent hydrolysis as well as product derivatization are also demonstrated.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yao Huang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Shi Y, Zhang Y, Ji X, Huang H. Hydroazidation of trifluoromethyl alkenes with trimethylsilyl azide enabled by organic photoredox catalysis. Chem Commun (Camb) 2024; 60:7741-7744. [PMID: 38973554 DOI: 10.1039/d4cc02503b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Herein, we report an organic photoredox-catalyzed hydroazidation of trifluoromethyl alkenes with user-friendly trimethylsilyl azide (TMSN3), enabling a direct access to a broad range of valuable β-CF3-azides with exclusive selectivity under mild reaction conditions. The synthetic utility of this reaction was demonstrated by the late-stage modification of complex drug derivatives, scale-up of the reaction and diverse further derivatizations of the β-CF3-azide product.
Collapse
Affiliation(s)
- Yutao Shi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yuliang Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
7
|
Wang Z, Lin JH, Xiao JC. Photocatalytic Keto- and Amino-Trifluoromethylation of Alkenes. Org Lett 2024; 26:1980-1984. [PMID: 38421197 DOI: 10.1021/acs.orglett.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Efforts to develop alternatives to triflic anhydride (Tf2O) as a trifluoromethylation reagent continue due to its limitations, including volatility, corrosiveness, and moisture sensitivity. Described herein is the use of a trifluoromethylsulfonylpyridinium salt (TFSP), easily obtained by a one-step reaction of Tf2O with 4-dimethylaminopyridine, as a reagent for the trifluoromethylative difunctionalization of alkenes by photoredox catalysis. DMSO and CH3CN are suitable solvents for achieving keto- and amino-trifluoromethylation of alkenes, respectively, with good functional group tolerance.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
8
|
Ouyang Y, Qing FL. Photoredox Catalyzed Radical Fluoroalkylation with Non-Classical Fluorinated Reagents. J Org Chem 2024; 89:2815-2824. [PMID: 38385430 DOI: 10.1021/acs.joc.3c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The emergence of photocatalysis has greatly advanced radical fluoroalkylation reactions. Central to this advancement is the introduction and refinement of radical reagents, which play a pivotal role in driving these reactions forward. Intriguingly, some of these reagents, previously not recognized for their radical properties, have emerged as key players in this area. In this Perspective, we provide an overview of four representative reagents pioneered by our laboratory, which have subsequently garnered extensive application in broader research contexts, including difluorocarbene precursors bromodifluoromethylphosphonium bromide, electrophilic sulfonylation reagent triflic anhydride, and nucleophilic trifluoromethylation reagent methyl fluorosulfonyldifluoroacetate (Chen's reagent). The integration of phosphonium reagents, triflic anhydride, and methyl fluorosulfonyldifluoroacetate into photocatalysis has enabled some unexpected reactivities and now notably expanded the capabilities in radical difluoromethylation, trifluoromethylation, and difluoroalkylation. Our discussion highlights how these atypical reagents have enriched the toolkit available for radical fluoroalkylations, offering insights that could inspire future research and application in this area.
Collapse
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
9
|
Bormann N, Ward JS, Bergmann AK, Wenz P, Rissanen K, Gong Y, Hatz WB, Burbaum A, Mulks FF. Diiminium Nucleophile Adducts Are Stable and Convenient Strong Lewis Acids. Chemistry 2023; 29:e202302089. [PMID: 37427889 DOI: 10.1002/chem.202302089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Strong Lewis acids are essential tools for manifold chemical procedures, but their scalable deployment is limited by their costs and safety concerns. We report a scalable, convenient, and inexpensive synthesis of stable diiminium-based reagents with a Lewis acidic carbon centre. Coordination with pyridine donors stabilises these centres; the 2,2'-bipyridine adduct shows a chelation effect at carbon. Due to high fluoride, hydride, and oxide affinities, the diiminium pyridine adducts are promising soft and hard Lewis acids. They effectively produce acylpyridinium salts from carboxylates that can acylate amines to give amides and imides even from electronically intractable coupling partners.
Collapse
Affiliation(s)
- Niklas Bormann
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Ann Kathrin Bergmann
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Paula Wenz
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Yiwei Gong
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Wolf-Benedikt Hatz
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Alexander Burbaum
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Florian F Mulks
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
10
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
11
|
Niu Z, Wu Q, Li Q, Scheiner S. C∙∙∙O and Si∙∙∙O Tetrel Bonds: Substituent Effects and Transfer of the SiF 3 Group. Int J Mol Sci 2023; 24:11884. [PMID: 37569259 PMCID: PMC10418337 DOI: 10.3390/ijms241511884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The tetrel bond (TB) between 1,2-benzisothiazol-3-one-2-TF3-1,1-dioxide (T = C, Si) and the O atom of pyridine-1-oxide (PO) and its derivatives (PO-X, X = H, NO2, CN, F, CH3, OH, OCH3, NH2, and Li) is examined by quantum chemical means. The Si∙∙∙O TB is quite strong, with interaction energies approaching a maximum of nearly 70 kcal/mol, while the C∙∙∙O TB is an order of magnitude weaker, with interaction energies between 2.0 and 2.6 kcal/mol. An electron-withdrawing substituent on the Lewis base weakens this TB, while an electron-donating group has the opposite effect. The SiF3 group transfers roughly halfway between the N of the acid and the O of the base without the aid of cooperative effects from a third entity.
Collapse
Affiliation(s)
- Zhihao Niu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Z.N.); (Q.W.)
| | - Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Z.N.); (Q.W.)
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (Z.N.); (Q.W.)
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
12
|
Chen D, Xu L, Ren B, Wang Z, Liu C. Triflylpyridinium as Coupling Reagent for Rapid Amide and Ester Synthesis. Org Lett 2023. [PMID: 37290965 DOI: 10.1021/acs.orglett.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An effective method has been developed to facilitate the synthesis of amides and esters at ambient temperature within 5 min, in which a stable and easily accessible triflylpyridinium reagent is used. Remarkably, this method not only has a wide range of substrate compatibility but also could realize the scalable synthesis of peptide and ester via a continuous flow process. Moreover, excellent chirality retentions are presented during activation of carboxylic acid.
Collapse
Affiliation(s)
- Du Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxuan Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Ren
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Li HP, He XH, Peng C, Li JL, Han B. A straightforward access to trifluoromethylated natural products through late-stage functionalization. Nat Prod Rep 2023; 40:988-1021. [PMID: 36205211 DOI: 10.1039/d2np00056c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Covering: 2011 to 2021Trifluoromethyl (CF3)-modified natural products have attracted increasing interest due to their magical effect in binding affinity and/or drug metabolism and pharmacokinetic properties. However, the chemo and regioselective construction of natural products (NPs) bearing a CF3 group still remains a long-standing challenge due to the complex chemical scaffolds and diverse reactive sites of NPs. In recent years, the development of late-stage functionalization strategies, including metal catalysis, organocatalysis, light-driven reactions, and electrochemical synthesis, has paved the way for direct trifluoromethylation process. In this review, we summarize the applications of these strategies in the late-stage trifluoromethylation of natural products in the past ten years with particular emphasis on the reaction model of each method. We also discuss the challenges, limitations, and future prospects of this approach.
Collapse
Affiliation(s)
- He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
14
|
Chen LY, Pan PF, Lin JH, Jin CM, Xiao JC. Tf 2O as a CF 3 Source for the Synthesis of Trifluoromethoxylation Reagent nC 4F 9SO 3CF 3. J Org Chem 2023. [PMID: 36763542 DOI: 10.1021/acs.joc.2c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Described herein is the convenient synthesis of an efficient trifluoromethoxylation reagent, nC4F9SO3CF3, by using cheap and widely available reagents and without the need of any tedious column chromatography purification procedure.
Collapse
Affiliation(s)
- Ling-Ying Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peng-Fei Pan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Chuan-Ming Jin
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
15
|
Qin Q, Cheng Z, Jiao N. Recent Applications of Trifluoromethanesulfonic Anhydride in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202215008. [PMID: 36541579 DOI: 10.1002/anie.202215008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Trifluoromethanesulfonic anhydride has been widely used in synthetic organic chemistry, not only for the conversion of various oxygen-containing compounds to the triflates, but also for the electrophilic activation and further conversion of amides, sulfoxides, and phosphorus oxides. In recent years, the utilization of Tf2 O as an activator for nitrogen-containing heterocycles, nitriles and nitro groups has become a promising tool for the development of new valuable methods with considerable success. In addition, Tf2 O has been used as an efficient radical trifluoromethylation and trifluoromethylthiolation reagent due to the contained SO2 CF3 fragment, and significant progress has been made in this area. This review summarizes the recent progress in the applications of Tf2 O in the above two aspects, and aims to illustrate the role and potential application of this reagent in organic synthesis.
Collapse
Affiliation(s)
- Qixue Qin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
16
|
Liu H, He X, Chen Z, Zhang J, Fang X, Sun Z, Chu W. N-Trifluoromethyl Succinimide as a New Reagent for Direct C-H Trifluoromethylation of Free Anilines. Chem Asian J 2023; 18:e202300039. [PMID: 36815283 DOI: 10.1002/asia.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
N-trifluoromethylsuccinimide (NTFS) as a new trifluoromethylation reagent was designed and prepared via Ag-CF3 , and applied to the direct trifluoromethylation of free aniline, and a series of trifluoromethyl products were obtained with good yields. The practicability of the protocol was verified by a gram-level experiment and the synthesis of the antiasthmatic drug Mabuterol. In addition, a possible radical mechanism was proposed and verified by related experiments. The protocol provided a new solution for C-H trifluoromethylation of free anilines.
Collapse
Affiliation(s)
- Hao Liu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang, 150080, P. R. China
| | - Xin He
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang, 150080, P. R. China
| | - Zhicheng Chen
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang, 150080, P. R. China
| | - Jingchao Zhang
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang, 150080, P. R. China
| | - Xinjie Fang
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang, 150080, P. R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang, 150080, P. R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang, 150080, P. R. China
| |
Collapse
|
17
|
Li S, Yang W, Shi J, Dan T, Han Y, Cao ZC, Yang M. Synthesis of Trifluoromethyl-Substituted Allenols via Catalytic Trifluoromethylbenzoxylation of 1,3-Enynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Songrong Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wenwen Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Junjie Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Tingting Dan
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Zhi-Chao Cao
- Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| |
Collapse
|
18
|
Chen D, Xu L, Yu Y, Mo Q, Qi X, Liu C. Triflylpyridinium Enables Rapid and Scalable Controlled Reduction of Carboxylic Acids to Aldehydes using Pinacolborane. Angew Chem Int Ed Engl 2023; 62:e202215168. [PMID: 36378536 DOI: 10.1002/anie.202215168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Building up new and efficient methods for the controlled conversion of carboxylic acids to aldehydes is important. Herein, we report a rapid, modular and scalable method for the conversion of carboxylic acids to aldehydes using pinacolborane at ambient temperature, in which a triflylpyridinium reagent is used. The conversion of carboxylic acid to intermediate acylpyridinium by triflylpyridinium is new. A binary pyridine-coordinated boronium complex is generated after reduction. The unprecedented reduction of the acylpyridinium by HBpin opens up a practically direct synthesis of aldehydes from carboxylic acids. Theoretical studies indicate that the reduction of acylpyridinium requires a lower activation free energy than that of the product aldehyde. The synthetic advantage of this protocol is further highlighted by the scalable synthesis of aldehyde via continuous flow process. Configuration retention for chiral acids are presented in those syntheses.
Collapse
Affiliation(s)
- Du Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangxuan Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qinliang Mo
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
19
|
Ma R, Ren Y, Deng Z, Wang KH, Wang J, Huang D, Hu Y, Lv X. Visible Light Promotes Cascade Trifluoromethylation/Cyclization, Leading to Trifluoromethylated Polycyclic Quinazolinones, Benzimidazoles and Indoles. Molecules 2022; 27:molecules27238389. [PMID: 36500485 PMCID: PMC9737949 DOI: 10.3390/molecules27238389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Efficient visible-light-induced radical cascade trifluoromethylation/cyclization of inactivated alkenes with CF3Br, which is a nonhygroscopic, noncorrosive, cheap and industrially abundant chemical, was developed in this work, producing trifluoromethyl polycyclic quinazolinones, benzimidazoles and indoles under mild reaction conditions. The method features wide functional group compatibility and a broad substrate scope, offering a facile strategy to pharmaceutically produce valuable CF3-containing polycyclic aza-heterocycles.
Collapse
Affiliation(s)
- Ransong Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Ren
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhoubin Deng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Correspondence:
| | - Xiaobo Lv
- Shanghai Sinofluoro Chemicals Co., Ltd., Shanghai 201321, China
| |
Collapse
|
20
|
Yang XJ, Lin JH, Xiao JC. Trifluoromethylsulfonyl pyridinium salt for trifluoromethythiolation of indoles. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zhang FX, Lin JH, Xiao JC. Difluoromethylsulfonyl Imidazolium Salt for Difluoromethylation of Alkenes. Org Lett 2022; 24:7611-7616. [PMID: 36201292 DOI: 10.1021/acs.orglett.2c03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe the design and synthesis of a difluoromethylsulfonyl imidazolium salt, which can act as a radical difluoromethylation reagent to achieve the challenging amino- and oxy-difluoromethylation of alkenes. Notably, the three steps for the synthesis of the imidazolium salt do not require any tedious distillation or column chromatography purification process, and the amino- and oxy-difluoromethylation paths are simply determined by the selection of reaction solvents.
Collapse
Affiliation(s)
- Feng-Xu Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
22
|
Bao ZP, Zhang Y, Wu XF. Palladium-catalyzed difluoroalkylative carbonylation of styrenes toward difluoropentanedioates. Chem Sci 2022; 13:9387-9391. [PMID: 36093028 PMCID: PMC9384137 DOI: 10.1039/d2sc02665a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of fluorine atoms into organic molecules is an attractive but challenging topic. In this work, an interesting palladium-catalyzed difluoroalkylative carbonylation of aryl olefins has been developed. A wide range of aryl olefins were transformed into the corresponding difluoropentanedioate compounds with good functional-group tolerance and excellent regioselectivity. Inexpensive ethyl bromodifluoroacetate acts both as a difluoroalkyl precursor and a nucleophile here. Additionally, a scale-up reaction was also performed successfully, and further transformations of the obtained product were shown as well.
Collapse
Affiliation(s)
- Zhi-Peng Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| | - Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| |
Collapse
|
23
|
Shen GB, Yu HY, Xu Z, Cao W, Liu J, Xie L, Yan M. Theoretical study for evaluating and discovering organic hydride compounds as novel trifluoromethylation reagents. Org Biomol Chem 2022; 20:2831-2842. [PMID: 35294516 DOI: 10.1039/d2ob00056c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trifluoromethylation reaction is one of the significant and practical organic chemical reactions, and the design and discovery of novel trifluoromethylation reagents have been attracting more and more attention. Trifluoromethyl-substituted organic hydride compounds (XH) have the potential to be novel trifluoromethylation reagents in organic synthesis due to the favorable tendency of XH˙+ releasing ˙CF3 to form stable aromatic structures in terms of thermodynamics. The key elementary step of the trifluoromethylation is the radical cation (XH˙+) generation by catalysis or single-electron activation releasing ˙CF3 to form a stable aromatic structure, which also provides the thermodynamic driving force of the chemical process. In this work, 47 new trifluoromethylation reagent candidates of XHs were designed and calculated for the Gibbs free energy and activation free energy [ΔG‡RD(XH˙+)] of XH˙+ releasing ˙CF3 using the density functional theory (DFT) method, in order to quantitatively measure the reactivity of XHs as trifluoromethylation reagents, and to establish the molecular library as well as reactivity database of novel trifluoromethylation reagents for synthetic chemists. According to the and ΔG‡RD(XH˙+) values, all the XHs can be reasonably divided into 3 classes, including class 1 (excellent trifluoromethylation reagents), class 2 (potential trifluoromethylation reagents) and class 3 (not trifluoromethylation reagents). To our delight, 15 XHs with a 1,4-dihydropyridine structure and 3 XHs with a 3,4-dihydropyrimidin-2-one structure are identified to be novel excellent and potential trifluoromethylation reagents, respectively, according to their reactivity data. The relationship between the structural features, including methylation, heteroatom, substituents, conjugated structure and so on, and the reactivity of XHs as trifluoromethylation reagents are also discussed in this work. The computation results indicate that trifluoromethyl-substituted 1,4-dihydropyridine compounds and 3,4-dihydropyrimidin-2-one analogues could be possible trifluoromethylation reagents in organic synthesis. This work may provide the theoretical basis and references for discovering organic hydride compounds as novel reagents for trifluoromethylation or other alkylation reactions.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Hao-Yun Yu
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Zhihao Xu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, P. R. China.
| | - Weilong Cao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, P. R. China.
| | - Jie Liu
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Li Xie
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, P. R. China.
| |
Collapse
|
24
|
Wang Y, Bao Y, Tang M, Ye Z, Yuan Z, Zhu G. Recent advances in difunctionalization of alkenes using pyridinium salts as radical precursors. Chem Commun (Camb) 2022; 58:3847-3864. [PMID: 35257136 DOI: 10.1039/d2cc00369d] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarise the recent applications of pyridinium salts in the radical-mediated difunctionalization of alkenes. Pyridinium salts are a privileged class of compounds that show great utility in natural products and synthetic chemistry. Various organic transformations of pyridinium salts, especially in radical chemistry, have been developed in recent years. We prepared this review based on the two distinguished properties of pyridinium salts in radical transformation: (1) pyridinium salts can easily undergo single electron reduction to deliver X radicals. (2) Pyridinium salts are highly electrophilic so that alkyl radical intermediates can easily add to the pyridine core. Based on the role of pyridinium salts in difunctionalization of alkenes, the main body of this review is divided into three parts: (1) using pyridinium salts as X transfer reagents. (2) Using pyridinium salts as novel pyridine transfer reagents. (3) Using pyridinium salts as bifunctional reagents (X and pyridine). The C2 and C4 selectivity during pyridylation is discussed in detail. We hope that this review will provide a comprehensive overview of this topic and promote the wider development and application of pyridinium salts.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Meifang Tang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| |
Collapse
|
25
|
Liu L, Zhang W, Xu C, He J, Xu Z, Yang Z, Ling F, Zhong W. Electrosynthesis of CF
3
‐Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Wangqin Zhang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chao Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jiaying He
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhenhui Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
26
|
Wang Y, Liu R, Zhou P, Wu J, Li W, Wang C, Li H, Li D, Yang J. Visible Light‐Driven Base‐Promoted Radical Cascade Difluoroalkylization‐cyclization‐iodination of 1,6‐Enynes with Ethyl Difluoroiodoacetate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- Ningxia University School of chemistry and chemical Engineering 539 West Helan Mountains road, Xixia District, Yinchuan 750000 Yinchuan CHINA
| | - Ruyan Liu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Pengsheng Zhou
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Jianglong Wu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Wenshuang Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Chenyu Wang
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Dianjun Li
- Ningxia University State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Jinhui Yang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering China, Ning Xia, Yinchuan, Xixia District Ningxia University B 750021 Yinchuan CHINA
| |
Collapse
|
27
|
Mandal D, Maji S, Pal T, Sinha SK, Maiti D. Recent Advances in Transition-Metal Mediated Trifluoromethylation Reactions. Chem Commun (Camb) 2022; 58:10442-10468. [DOI: 10.1039/d2cc04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine compounds are known for their abundance in more than 20% of pharmaceutical and agrochemical products mainly due to the enhanced lipophilicity, metabolic stability and pharmacokinetic properties of organofluorides. Consequently,...
Collapse
|
28
|
Xiao F, Lin JH, Hao F, Zheng X, Guo Y, Xiao JC. Visible light mediated C-H trifluoromethylation of (hetero)arenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol on visible light mediated C-H trifluoromethylation of unactivated (hetero)arenes under blue LED irradiation has been developed. The reaction enables the rapid construction of a range of CF3-containing (hetero)arenes...
Collapse
|
29
|
Zheng L, Wang Y, Cai L, Guo W. Progress in C—CF 3/C—N Bond Formation Reactions of Alkenes Involving in Free Radicals. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Yang YF, Lin JH, Xiao JC. Starting from Styrene: A Unified Protocol for Hydrotrifluoromethylation of Diversified Alkenes. Org Lett 2021; 23:9277-9282. [PMID: 34797075 DOI: 10.1021/acs.orglett.1c03630] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In contrast with unactivated alkenes, the corresponding hydrotrifluoromethylation of styrene has remained challenging due to the strong propensity of styrene for oligomerization and polymerization. On the basis of our newly developed trifluoromethylation reagent, TFSP, herein we present a general method for the hydrotrifluoromethylation of styrene under photoredox catalysis. The substrate scope was further extended to unactivated alkenes, acrylates, acrylamides, and vinyl-heteroatom-substituted alkenes. The tunability of this method was showcased via the relevant deprotonative trifluoromethylation and trifluoromethyltrifluoroethoxylation reactions.
Collapse
Affiliation(s)
- Yi-Fei Yang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Recent Advances on the Halo- and Cyano-Trifluoromethylation of Alkenes and Alkynes. Molecules 2021; 26:molecules26237221. [PMID: 34885802 PMCID: PMC8659293 DOI: 10.3390/molecules26237221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Incorporation of fluorine into organic molecules is a well-established strategy in the design of advanced materials, agrochemicals, and pharmaceuticals. Among numerous modern synthetic approaches, functionalization of unsaturated bonds with simultaneous addition of trifluoromethyl group along with other substituents is currently one of the most attractive methods undergoing wide-ranging development. In this review article, we discuss the most significant contributions made in this area during the last decade (2012−2021). The reactions reviewed in this work include chloro-, bromo-, iodo-, fluoro- and cyano-trifluoromethylation of alkenes and alkynes.
Collapse
|