1
|
Al-Shidhani S, Takallou A, Lotfi Nosood Y, Al-Siyabi M, Christensen JB, Shalmani PP, Almaani A, Rostami A, Al-Harrasi A. Synthesis of benzouracils and carbamates from chloroacetamides through carbon-carbon bond cleavage. Org Biomol Chem 2025; 23:1841-1845. [PMID: 39831458 DOI: 10.1039/d4ob01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This work introduces a mild reaction-condition approach for the direct C-C bond cleavage of amides, resulting in the formation of benzouracil and carbamate structures. This method leverages a C-C bond cleavage strategy that enables nucleophilic addition to the amide carbonyl, involving a reactive spiro intermediate. A diverse range of chloroacetamides were synthesized and utilized as bifunctional starting materials in this transformation. The proposed strategy has proven to be a powerful tool for synthesizing a wide variety of compounds, achieving yields of up to 88%.
Collapse
Affiliation(s)
- Sulaiman Al-Shidhani
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Ahmad Takallou
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Yazdanbakhsh Lotfi Nosood
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Munir Al-Siyabi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Jørn Bolstad Christensen
- Department of Chemistry, University of Copenhagen, Thovaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Parisa Pakari Shalmani
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Alhajaj Almaani
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Ali Rostami
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| |
Collapse
|
2
|
Prasad R, Singh SK, Maity R, Ghosh P. Conversion of aromatic methyl ketones to esters and carboxylic acids using o-phthalaldehyde as an oxidant. Org Biomol Chem 2025; 23:1120-1128. [PMID: 39670510 DOI: 10.1039/d4ob01933d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Herein we describe a two-step conversion of aromatic methyl ketones to esters and carboxylic acids employing o-phthalaldehyde as an oxidant. In the first step, o-phthalaldehyde oxidizes the methyl group to 1-indanone, which acts as a leaving group in a subsequent regioselective retro-Claisen condensation to form esters and carboxylic acids. The mild oxidation conditions ensure the method is applicable to a broad range of substrates. Additionally, the two-step method is operationally simple and scalable, and can also be performed in a single pot.
Collapse
Affiliation(s)
- Rajendra Prasad
- Department of Chemistry, Central University of Jharkhand, Cheri-Manatu, Ranchi-835222, India.
| | - Saurabh Kumar Singh
- Department of Chemistry, Central University of Jharkhand, Cheri-Manatu, Ranchi-835222, India.
| | - Ranajit Maity
- Department of Chemistry, Central University of Jharkhand, Cheri-Manatu, Ranchi-835222, India.
| | - Partha Ghosh
- Department of Chemistry, Central University of Jharkhand, Cheri-Manatu, Ranchi-835222, India.
| |
Collapse
|
3
|
Liang B, Wen T, Cai X, Hu Y, Nie B, Ren W, Chen J, Benedict Lo TW, Chen X, Zhu Z. AgNOx as Nitrogen Source for [1+1+3] Cycloaddition of Isocyanides with Isocyanates: Selective Synthesis of 1,2,4-Triazoles. Org Lett 2024; 26:6380-6384. [PMID: 39038068 DOI: 10.1021/acs.orglett.4c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
A novel [1+1+3] annulation of AgNOx, isocyanides, and isocyanates for the selective synthesis of 1,2,4-triazoles is presented herein. In this transformation, AgNOx and isocyanates are used as nitrogen sources instead of the traditional hydrazine or diazonium reagents. This process also involves N-O/C-H/C═N bond cleavage and the construction of new N-N/C-N bonds with a good substrate scope and functional group tolerance.
Collapse
Affiliation(s)
- Baihui Liang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tingting Wen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiangya Cai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Yutong Hu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Biao Nie
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd, Dongguan 523871, China
| | - Weijie Ren
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiehao Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiuwen Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
4
|
Miyazaki M, Ura Y. Palladium/Iron-Catalyzed Wacker-Type Oxidation of Aliphatic Terminal and Internal Alkenes Using O 2. ACS OMEGA 2023; 8:41983-41990. [PMID: 37969998 PMCID: PMC10634151 DOI: 10.1021/acsomega.3c07577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
The Wacker-type oxidation of aliphatic terminal alkenes proceeds using a Pd/Fe catalyst system under mild reaction conditions using 1 atm O2 without other additives. The use of 1,2-dimethoxyethane/H2O as a mixed solvent was effective. The slow addition of alkenes is also important for improving product yields. Fe(III) citrate was the most efficient cocatalyst among the iron complexes examined, whereas other complexes such as FeSO4, Fe2(SO4)3, Fe(NO3)3, and Fe2O3 were also operative. This method is also applicable to aliphatic internal alkenes, which are generally difficult to oxidize using conventional Pd/Cu catalyst systems. The gram-scale synthesis and reuse of the Pd catalysts were also demonstrated.
Collapse
Affiliation(s)
- Mayu Miyazaki
- Department of Chemistry,
Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Yasuyuki Ura
- Department of Chemistry,
Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| |
Collapse
|
5
|
Guo Z, Li K, Li H, Wang X, Zhang J, Xie M. Acid‐Promoted Carbon‐Carbon Triple Bond Cleavage of Ynones for the Synthesis of Benzo[
d
]oxazoles/Benzo[
d
]thiazoles and 1‐Arylethan‐1‐ones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zi‐Yi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Ke‐Ru Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Hang Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Xu Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Ji‐Tan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Mei‐Hua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| |
Collapse
|
6
|
Jiang P, Wang Y, Chen D, Zheng Y, Huang S. Synthesis of 3‐Acyl‐Isoxazoles
via
Radical 5‐
endo trig
Cyclization of β,γ‐Unsaturated Ketones with NaNO
2. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yaming Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|