1
|
Cui X, Chen C, Xie M, Zhao T, Yi J, Sun W, Xiong Z, Hu J, Wong WL, Wu JQ. One-pot sequential synthesis of unsymmetrical diarylmethanes using methylene chloride as a C1-synthon. Org Biomol Chem 2024; 22:7965-7970. [PMID: 39267602 DOI: 10.1039/d4ob01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Bisindolylmethane (BIM) and its derivatives are widely used in the pharmaceutical industry due to their significant biological activities. However, most reported synthetic methods are focused on the synthesis of symmetric BIMs, while the synthesis of unsymmetrical BIMs remains a challenge. Herein, an unprecedented two-step one-pot method to afford unsymmetrically substituted 3,3'-BIM frameworks, using methylene chloride (DCM) as the C1-synthon is reported. In this protocol, the formation of two C-C bonds can be achieved via a one-pot reaction. The utility of commercially available phenols and anilines was also demonstrated in the construction of unsymmetrical diarylmethanes. This protocol provides a straightforward approach to access diverse unsymmetrical diarylmethane derivatives under simple and mild conditions. The broad substrate compatibility and good functional group tolerance of the protocol support its practical application potential.
Collapse
Affiliation(s)
- Xueli Cui
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Chunming Chen
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Mei Xie
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Taotao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jianfeng Yi
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Weiqiang Sun
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Zhuang Xiong
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jia-Qiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, No. 99 Yingbin Road, Jiangmen 529020, China.
| |
Collapse
|
2
|
Gao Q, Kong W, Chen C, Shi J, Yao X, Tang X. Copper-Mediated Decarboxylative Coupling of 3-Indoleacetic Acids with Sulfoxonium Ylides for the Synthesis of α-Acetoxyl Ketones. Org Lett 2024; 26:5940-5945. [PMID: 38989672 DOI: 10.1021/acs.orglett.4c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The most convenient and direct method of synthesizing an α-acyloxy ketone is the reaction of a diazo compound with a carboxylic acid via O-H insertion. However, due to the limitations in preparing and storing diazo compounds, the application of this method is restricted. In this study, Cu(OAc)2-mediated (OAc = acetate) decarboxylative coupling reactions of 3-indoleacetic acids with sulfoxonium ylides were developed for use in rapidly synthesizing α-acetoxyl ketones. In this reaction, Cu(OAc)2 was not only used as an oxidant, but also as acetate ion source. Notably, when 5-methoxy-2-methyl-3-indoleacetic acid reacted with different sulfoxonium ylides, the corresponding products exhibited fluorescence, and furthermore, several products displayed antiproliferative activities against various human cancer cell lines.
Collapse
Affiliation(s)
- Qiwen Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Weiya Kong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Chen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| |
Collapse
|
3
|
Guo G, Zhang Y, Li Y, Li Z. Photoredox-Catalyzed Decarboxylative Cross-Coupling Reaction to Synthesis Unsymmetrical Diarylmethanes. Molecules 2024; 29:2156. [PMID: 38731647 PMCID: PMC11085496 DOI: 10.3390/molecules29092156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The photoredox-catalyzed decarboxylative cross-coupling reaction of aryl acetic acids and aryl nitriles has been achieved under an argon atmosphere in high yields. This method provides a fast way to obtain prevalent aryl acetic acids from an abundant natural source. A tentative radical mechanism has been proposed.
Collapse
Affiliation(s)
- Guozhe Guo
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | | | | | | |
Collapse
|
4
|
Wen K, Chen C, Kong W, Gao Q, Shi J, Tang X. Cooperative Triple Catalysis Enables Deaminative α-Indolmethylation of Carbonyl Compounds with Gramines. J Org Chem 2024. [PMID: 38190807 DOI: 10.1021/acs.joc.3c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
α-Functionalization of carbonyl compounds is an important reaction in synthetic chemistry. However, the development of novel synthetic strategies to realize this reaction is challenging. This study describes the α-indolmethylation of carbonyl compounds using cooperative copper, amine, and hydrogen-bond catalysis. This reaction provides a novel and efficient strategy for developing indolmethylated carbonyl compounds by deaminative coupling of gramines.
Collapse
Affiliation(s)
- Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Chen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Weiya Kong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Qiwen Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| |
Collapse
|
5
|
Wang J, Yu R, Nian C, Liao M, Han Z, Sun J, Huang H. Metal-Free C(sp 3)-H Bond Arylation of 3-Methylindole Derivatives via 3-Indole Imine Methides. Org Lett 2023; 25:8478-8483. [PMID: 37966338 DOI: 10.1021/acs.orglett.3c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Direct arylation of the benzylic C(sp3)-H bond is one of the most straightforward strategies for the construction of multi-aryl methanes, owing to the extraordinary step and atom economy. In this paper, we developed the first metal-free arylation of the C(sp3)-H bond in 3-methylindoles, thereby providing rapid access to a range of diaryl- and triarylmethanes with two indole rings. Mechanistically, 3-indole imine methide serves as the key intermediate. Water plays a crucial role in this process, likely serving as a proton shuttle to facilitate the key 1,3-proton transfer step in this reaction and, thus, enhance the reaction efficiency.
Collapse
Affiliation(s)
- Jie Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Run Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Cuicui Nian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
6
|
Lutovsky GA, Gockel SN, Bundesmann MW, Bagley SW, Yoon TP. Iron-mediated modular decarboxylative cross-nucleophile coupling. Chem 2023; 9:1610-1621. [PMID: 37637494 PMCID: PMC10449378 DOI: 10.1016/j.chempr.2023.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Carboxylic acids are valuable building blocks for pharmaceutical discovery because of their chemical stability, commercial availability, and structural diversity. Decarboxylative coupling reactions enable versatile functionalization of these feedstock chemicals, but many of the most general methods require prefunctionalization of carboxylic acids with redox-active moieties. These internal oxidants can be costly, their installation impedes rapid library synthesis, and their use results in environmentally problematic organic byproducts. We report herein a method for the direct decarboxylative cross-coupling of native carboxylic acids with nucleophilic coupling partners mediated by inexpensive, terrestrially abundant, and nontoxic Fe(III) salts. This method involves an initial photochemical decarboxylation followed by radical-polar crossover, which enables the construction of diverse carbon-carbon, carbon-oxygen, and carbon-nitrogen bonds with remarkable generality.
Collapse
Affiliation(s)
- Grace A. Lutovsky
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
- These authors contributed equally
| | - Samuel N. Gockel
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
- Department of Chemistry, Colorado State University Pueblo, 2200 Bonforte Boulevard, Pueblo, CO 81001, USA
| | | | - Scott W. Bagley
- Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
- Lead contact
| |
Collapse
|
7
|
Yu W, Wan J, Chen P, Zhao K, Huang H, Wang T, Luo J. Palladium-catalyzed cross-coupling of benzene sulfonhydrazides and benzyltrimethylammonium salts: Synthesis of diarylmethanes. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2172347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Weijie Yu
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, People's Republic of China
| | - Juelin Wan
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, People's Republic of China
| | - Puqing Chen
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, People's Republic of China
| | - Kuang Zhao
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, People's Republic of China
| | - Haijin Huang
- College of Chemistry and Environmental Sciences, Shangrao Normal University, Shangrao, People's Republic of China
| | - Tao Wang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, People's Republic of China
| | - Jin Luo
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, People's Republic of China
| |
Collapse
|
8
|
Dong K, Li J, Li RP, Mao M, Liu J, Wang X, Tang S. One-Pot Sequential Synthesis of 3,3'- or 2,3'-Bis(indolyl)methanes by Using 1,3-Dithiane as the Methylene Source. J Org Chem 2022; 87:14930-14939. [PMID: 36259953 DOI: 10.1021/acs.joc.2c01844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A simple and efficient method for structurally diverse symmetrical and unsymmetrical 3,3'- and 2,3'-bisindolylmethanes has been developed through a one-pot sequential reaction using 1,3-dithiane as the methylene source. The important AhR agonists ICZ and malassezin were synthesized with excellent efficiency by this straightforward approach.
Collapse
Affiliation(s)
- Kang Dong
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jia Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rui-Peng Li
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mingming Mao
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Liu
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shouchu Tang
- School of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
9
|
Wang J, Ye Y, Sang T, Zhou C, Bao X, Yuan Y, Huo C. C(sp 3)-H/C(sp 3)-H Dehydrogenative Radical Coupling of Glycine Derivatives. Org Lett 2022; 24:7577-7582. [PMID: 36214657 DOI: 10.1021/acs.orglett.2c02951] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a general C(sp3)-H/C(sp3)-H dehydrogenative coupling strategy for the preparation of various natural or unnatural amino acids from readily available glycine derivatives and hydrocarbons through a combination of SET and HAT process.
Collapse
Affiliation(s)
- Jiayuan Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Tongzhi Sang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Chenxing Zhou
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
10
|
Wen K, Li Y, Gao Q, Chen J, Yang J, Tang X. Copper-Mediated Cyclization of o-Hydroxyaryl Enaminones with 3-Indoleacetic Acids toward the Synthesis of 3-Indolmethyl-Chromones. J Org Chem 2022; 87:9270-9281. [PMID: 35786963 DOI: 10.1021/acs.joc.2c01005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we describe a copper-mediated tandem decarboxylative coupling/annulation protocol of o-hydroxyaryl enaminones with 3-indoleacetic acids. A series of 3-indolmethyl-chromones were afforded in up to 97% yield. A one-pot method for 3-indolmethyl-chromones from o-hydroxy acetophenones, N, N-dimethylformamide dimethyl acetal, and 3-indoleacetic acids was also developed. Derivatization of the products was conducted to provide various indolmethyl-substituted pyrimidines. Moreover, a biological evaluation revealed that some compounds had anti-influenza viral activities.
Collapse
Affiliation(s)
- Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Yinyan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Qiwen Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| |
Collapse
|
11
|
McKnight J, Shavnya A, Sach NW, Blakemore DC, Moses IB, Willis MC. Reductant‐Free Cross‐Electrophile Synthesis of Di(hetero)arylmethanes by Palladium‐Catalyzed Desulfinative C−C Coupling. Angew Chem Int Ed Engl 2022; 61:e202116775. [PMID: 35229419 PMCID: PMC9314995 DOI: 10.1002/anie.202116775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 01/13/2023]
Abstract
An efficient Pd‐catalyzed one‐pot desulfinative cross‐coupling to access medicinally relevant di(hetero)arylmethanes is reported. The method is reductant‐free, and involves a sulfinate transfer reagent and a Pd‐catalyst mediating the union of two electrophilic coupling partners; a (hetero)aryl halide and a benzyl halide. We establish for the first time that benzyl sulfinates, generated in situ, undergo efficient Pd‐catalyzed desulfinative cross‐coupling with (hetero)aryl halides to generate di(hetero)arylmethanes. The reaction can be extended to benzylic pseudohalides derived from benzyl alcohols. The reactions are straightforward to perform and scalable, and all reaction components are commercially available.
Collapse
Affiliation(s)
- Janette McKnight
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Andre Shavnya
- Medicine Design, Pfizer Inc. Eastern Point Road Groton CT 06340 USA
| | - Neal W. Sach
- Medicine Design, La Jolla Laboratories, Pfizer Inc. 10770 Science Center Drive San Diego CA 92121 USA
| | | | - Ian B. Moses
- Chemical Research and Development, Pfizer Ltd. Discovery Park, Ramsgate Rd Sandwich CT13 9ND UK
| | - Michael C. Willis
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
12
|
McKnight J, Shavnya A, Sach NW, Blakemore DC, Moses IB, Willis MC. Reductant‐Free Cross‐Electrophile Synthesis of Di(hetero)arylmethanes by Palladium‐Catalyzed Desulfinative C−C Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Janette McKnight
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Andre Shavnya
- Medicine Design, Pfizer Inc. Eastern Point Road Groton CT 06340 USA
| | - Neal W. Sach
- Medicine Design, La Jolla Laboratories, Pfizer Inc. 10770 Science Center Drive San Diego CA 92121 USA
| | | | - Ian B. Moses
- Chemical Research and Development, Pfizer Ltd. Discovery Park, Ramsgate Rd Sandwich CT13 9ND UK
| | - Michael C. Willis
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
13
|
Indurthi HK, Das S, Kumar A, Sharma DK. K2S2O8-glucose mediated oxidative coupling of alcohols with indoles for synthesis of Bis(indolyl)methanes in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj02525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of inexpensive K2S2O8 in water at room temperature for synthesis of bis(indolyl)methanes (BIMs) from simple indoles and alcohols is reported. The key step involves the conversion of alcohols...
Collapse
|
14
|
Zhang XL, Guo RL, Wang MY, Zhao BY, Jia Q, Yang JH, Wang YQ. Palladium-Catalyzed Three-Component Regioselective Dehydrogenative Coupling of Indoles, 2-Methylbut-2-ene, and Carboxylic Acids. Org Lett 2021; 23:9574-9579. [PMID: 34854691 DOI: 10.1021/acs.orglett.1c03776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Five-carbon (C5) structural units are the fundamental building blocks of many natural products. An unprecedented palladium-catalyzed three-component dehydrogenative cascade coupling of indoles, 2-methylbut-2-ene, and carboxylic acids has been developed. The approach enables the straightforward introduction of a C3'-bonded five-carbon structural unit with a tertiary alcohol quaternary carbon center into indoles. The protocol employs 2-methylbut-2-ene as the C5 source and is featured by a broad substrate scope, atom and step economies, and high chemo- and regioselectivies.
Collapse
Affiliation(s)
- Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Jin-Hui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Yinchuan, Ningxia 750021, People's Republic of China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| |
Collapse
|