1
|
Wang K, Tian KY, Wang XN, Chen JH, Fan C, Zhou QL. Ligand Enabled Iridium-Catalyzed Enantioselective Hydroalkenylation of α-Olefins and Styrenes with Acrylamides. J Am Chem Soc 2025; 147:11639-11646. [PMID: 40165741 DOI: 10.1021/jacs.4c18412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A new type of chiral spiro diphosphite ligand has been developed. Using these ligands, iridium-catalyzed highly enantioselective hydroalkenylation of α-olefins and styrenes with acrylamides has been realized. A variety of aliphatic and aromatic alkenes were successfully coupled with acrylamides to produce γ-substituted chiral acrylamides. The reaction exhibits excellent branched selectivity and high enantioselectivity along with broad substrate scope and good functional group tolerance. DFT calculations indicate that the methyl groups in the ligand play a crucial role in controlling both regioselectivity and enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Kai-Yuan Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xin-Ning Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jing-Hao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chao Fan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Si XJ, Wang TC, Loh TP, Lu MZ. Recent advances in catalytic asymmetric alkenyl C(sp 2)-H bond functionalizations. Chem Sci 2025; 16:5836-5848. [PMID: 40103714 PMCID: PMC11912223 DOI: 10.1039/d5sc00623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Alkenes and their derivatives are widespread in numerous bioactive natural products and pharmaceutically relevant molecules. They are also synthetically versatile building blocks that have found broad applications in a plethora of organic transformations. The asymmetric alkenyl C(sp2)-H functionalization of readily available olefinic feedstocks allows the practical and straightforward synthesis of structurally diverse chiral compounds. As such, an ever-increasing number of robust and versatile strategies have been established to selectively functionalize the olefinic C(sp2)-H bonds in recent years. The current review provides a concise overview of these impressive achievements in the realm of asymmetric alkenyl C-H functionalization reactions, with a particular emphasis on substrate scopes, limitations, mechanistic studies, as well as their applications in the precise synthesis of diversely functionalized chiral molecules. Challenges and future opportunities regarding this area of research are also discussed. Through this review, we aim to inspire continuous efforts toward further development of more practical and broadly applicable strategies to advance this burgeoning field.
Collapse
Affiliation(s)
- Xiao-Ju Si
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
| | - Tian-Ci Wang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore 637371 Singapore
| | - Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
- School of Chemistry and Chemical Engineering, Huaiyin Normal University Huaian 223300 China
| |
Collapse
|
3
|
Jing C, Mao W, Bower JF. Iridium-Catalyzed Enantioselective Alkene Hydroalkylation via a Heteroaryl-Directed Enolization-Decarboxylation Sequence. J Am Chem Soc 2023; 145:23918-23924. [PMID: 37879082 PMCID: PMC10636747 DOI: 10.1021/jacs.3c10163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Upon exposure to a cationic Ir(I)-complex modified with the chiral diphosphine DuanPhos, hydroalkylations of styrenes and α-olefins with diverse heteroaryl tert-butyl acetates occur with complete branched selectivity and very high enantioselectivity. The initial adducts undergo acid promoted decarboxylation in situ to provide alkylated heteroarenes possessing defined β-stereocenters. The processes are postulated to proceed via a stereodefined chiral Ir-enolate, which arises upon heteroarene directed enolization of the heteroaryl acetate precursor. The method can be classified as an enantioselective decarboxylative C(sp3)-C(sp3) cross-coupling.
Collapse
Affiliation(s)
- Changcheng Jing
- Department of Chemistry, University
of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Wenbin Mao
- Department of Chemistry, University
of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - John F. Bower
- Department of Chemistry, University
of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| |
Collapse
|
4
|
Hung Nigel Tang K, Tokutake R, Ito M, Shibata T. Ir-Catalyzed Distal Branch-Selective Hydroarylation of Unactivated Internal Alkenes with Benzanilides via C-H Activation along with Consecutive Isomerization. Org Lett 2023. [PMID: 37427870 DOI: 10.1021/acs.orglett.3c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We herein report a synergistic strategy of C-H activation and consecutive isomerization catalyzed by an Ir catalyst to selectively obtain branched isomers as C-H alkylated products of benzanilide derivatives. A well-tuned ligand and a directing group are crucial to achieve this selectivity. The scope of this reaction is demonstrated by the use of a variety of substituents and complex molecules.
Collapse
Affiliation(s)
- King Hung Nigel Tang
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Ryo Tokutake
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mamoru Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Li MY, Zhai S, Nong XM, Gu A, Li J, Lin GQ, Liu Y. Trisubstituted alkenes featuring aryl groups: stereoselective synthetic strategies and applications. Sci China Chem 2023; 66:1261-1287. [DOI: 10.1007/s11426-022-1515-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 03/07/2024]
|
6
|
Li MY, Li J, Gu A, Nong XM, Zhai S, Yue ZY, Feng CG, Liu Y, Lin GQ. Solvent-free and catalyst-free direct alkylation of alkenes. GREEN CHEMISTRY 2023; 25:7073-7078. [DOI: 10.1039/d3gc02685j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A convenient method for synthesizing trisubstituted alkenes through direct alkylation of alkenes was achieved under solvent-free and catalyst-free conditions. This reaction highlighted by a low E-factor and a high atom- and step-economy.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Takashima C, Kurita H, Takano H, Ikabata Y, Shibata T, Nakai H. Experimental and Theoretical Evidence for Relativistic Catalytic Activity in C-H Activation of N-Phenylbenzamide Using a Cationic Iridium Complex. J Phys Chem A 2022; 126:7627-7638. [PMID: 36240483 DOI: 10.1021/acs.jpca.2c04747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study elucidates that relativistic effect plays a key role in catalytic C-H activation using a cationic Ir complex. Experiments show that the cationic Ir(I)-diphosphine catalyst can be used for the deuterium substitution of N-phenylbenzamide, whereas a cationic Rh(I)-diphosphine catalyst is scarcely effective. Density functional theory calculations, including the relativistic effect, demonstrate a large difference in the reaction energy diagrams for the C-H activation of N-phenylbenzamide between the cationic Ir and Rh catalysts. In particular, the relatively low reaction barrier and considerably stabilized product obtained for the Ir catalysts are rationalized by strong Ir-C and Ir-H interactions, which originate from the relativistic self-consistent d-orbital expansion of Ir.
Collapse
Affiliation(s)
- Chinami Takashima
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Hisaki Kurita
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido001-0021, Japan.,ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, JST, Sapporo, Hokkaido060-0810, Japan
| | - Yasuhiro Ikabata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| |
Collapse
|
9
|
Sun X, Lin EZ, Li BJ. Iridium-Catalyzed Branch-Selective and Enantioselective Hydroalkenylation of α-Olefins through C-H Cleavage of Enamides. J Am Chem Soc 2022; 144:17351-17358. [PMID: 36121772 DOI: 10.1021/jacs.2c07477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalytic branch-selective hydrofunctionalization of feedstock α-olefins to form enantioenriched chiral compounds is a particularly attractive yet challenging transformation in asymmetric catalysis. Herein we report an iridium-catalyzed asymmetric hydroalkenylation of α-olefins through directed C-H cleavage of enamides. This atom-economical addition process is highly branch-selective and enantioselective, delivering trisubstituted alkenes with an allylic stereocenter. DFT calculations reveal the origin of regio- and enantioselectivity.
Collapse
Affiliation(s)
- Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
11
|
Shibata T, Iwaki T, Ito M. Ir‐Catalyzed Intramolecular Cyclization of 2‐Alkynyl Diaryl Sulfides for the Selective Synthesis of Sulfur‐Containing Polycyclic Compounds. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Mamoru Ito
- Advanced Science & Engineering, Waseda University JAPAN
| |
Collapse
|
12
|
Kojima M, Sasaki M, Ito M, Shibata T. Tail‐To‐Tail Stereoselective Dimerization of Acrylate Derivatives via Iridium‐Catalyzed Vinylic
sp
2
C−H Activation. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Masafumi Kojima
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Mio Sasaki
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Mamoru Ito
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
13
|
Tang KHN, Uchida K, Nishihara K, Ito M, Shibata T. Ir-Catalyzed Remote Functionalization by the Combination of Deconjugative Chain-Walking and C-H Activation Using a Transient Directing Group. Org Lett 2022; 24:1313-1317. [PMID: 35139636 DOI: 10.1021/acs.orglett.1c04321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An Ir-catalyzed reaction of N-benzylideneanilines with functionalized alkenes such as α,β-unsaturated esters gave ortho-substituted benzaldehyde derivatives with a functional group at the remote position after acidic treatment. The present transformation involves deconjugative long-range isomerization (chain-walking) up to 11 times and C-H activation using an imino group as a transient directing group.
Collapse
Affiliation(s)
- King Hung Nigel Tang
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kanako Uchida
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kazuki Nishihara
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mamoru Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
14
|
Shibata T, Sasaki M, Kojima M, Ito M. Ir-Catalyzed Enantioselective Formal C-H Conjugate Addition of Pyrrole and Indoles to α,β-Unsaturated Carbonyl Compounds. Org Lett 2021; 23:9078-9082. [PMID: 34780192 DOI: 10.1021/acs.orglett.1c03375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chiral Ir(I)-catalyzed intermolecular reaction of N-carbamoylpyrrole and indole derivatives with α,β-unsaturated carbonyl compounds such as crotonates proceeded with high enantioselectivity. The obtained chirally functionalized pyrroles and indoles are formal C-H conjugate adducts. The reaction mechanism was studied by deuterium labeling experiments.
Collapse
Affiliation(s)
- Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mio Sasaki
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Masafumi Kojima
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mamoru Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|