1
|
Han J, Tang X, Cheng X, Zeng T, Tian Y, Gong Y, Li B. Copper-Catalyzed Nucleophilic Cycloisomerization Cascade Constructing Azepinoindolizine. Org Lett 2024; 26:8057-8062. [PMID: 39248598 DOI: 10.1021/acs.orglett.4c02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Numerous effective bioisosteric replacements have been identified through substituting scaffolds and functional groups in lead molecules with alternative ones that preserve or enhance the desired biological activity of the original compound. Here, a copper-catalyzed nucleophilic cycloisomerization was developed to access potential bioisosteric replacements of azepinoindole. In this process, "tetra-alkene" characteristic of indolizine undergoes a 12π electrocyclization, offering a complementary method to obtain azepinoindolizine derivatives that are otherwise challenging to prepare through conventional means.
Collapse
Affiliation(s)
- Jingpeng Han
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
| | - Xuan Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xue Cheng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Tu Zeng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yingjian Gong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
2
|
Davydov DA, Giricheva MA, Malysheva YB, Fukin GK, Budruev AV. Photoinitiated Rearrangement of Aromatic Azides to 2-Aminonicotinates. J Org Chem 2023; 88:14998-15006. [PMID: 37857349 DOI: 10.1021/acs.joc.3c01453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
This study describes a one-pot photoinduced method for azepine synthesis and their subsequent rearrangement into pyridines. The rearrangement of the azepine, formed during photolysis, occurs due to both thermal and photochemical activation of the reaction. This requires an electron-donating substituent at the second position of the azepine and an electron-withdrawing substituent at the third position of the azepine. A reaction mechanism has been proposed to explain the role of water and the nature of the azepine substituents.
Collapse
Affiliation(s)
- Denis A Davydov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Prosp., 603950 Nizhny Novgorod, Russia
| | - Marina A Giricheva
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Prosp., 603950 Nizhny Novgorod, Russia
| | - Yulia B Malysheva
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Prosp., 603950 Nizhny Novgorod, Russia
| | - Georgy K Fukin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina Str., GSP-445 Nizhny Novgorod, Russia
| | - Andrei V Budruev
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Prosp., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Lei X, Feng J, Guo Q, Li Y, Shi J. Synthesis of Polysubstituted Furans via Rh(II)-Catalyzed [2 + 3] Annulation of N-Sulfonyl-1,2,3-triazoles with Enaminones. Org Lett 2023; 25:7338-7343. [PMID: 37767967 DOI: 10.1021/acs.orglett.3c02771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
An unprecedented [2 + 3] annulation of N-sulfonyl-1,2,3-triazoles with enaminones is reported for the access of polysubstituted furans. The key to the success of the transformations lies in the use of Rh(II)-Brønsted acid as cooperative catalysts. Unlike the conventional annulations of N-sulfony-l-1,2,3-triazoles, the Rh(II)-azavinyl carbenes species play dual functions in this work, enabled by the cleavage of the C(sp2)-N bond. The mechanism studies suggested that an intermolecular rearrangement of the TsNH- group is crucial to the annulation process.
Collapse
Affiliation(s)
- Xiaoqiang Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Juan Feng
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuanhe Li
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and the Peking University, Beijing 100871, China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Han J, Yang Y, Gong Y, Tang X, Tian Y, Li B. Divergent access to 5,6,7-perifused cycles. Nat Commun 2023; 14:5148. [PMID: 37620317 PMCID: PMC10449863 DOI: 10.1038/s41467-023-40801-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Nitrogen-containing heterocycles are the key components in many pharmaceuticals and functional materials. In this study, we report a transition metal-catalyzed high-order reaction sequence for synthesizing a structurally unique N-center 5,6,7-perifused cycle (NCPC). The key characteristics include the formation of a seven-membered ring by the 8π electrocyclization of various alkenes and aromatic heterocycles as π-components, in which metal carbene species are generated that further induce the cleavage of the α-C-H or -C-C bond. Specifically, the latter can react with various nucleophilic reagents containing -O, -S, -N, and -C. The stereo-controlled late-stage modification of some complicated pharmaceuticals indicates the versatility of this protocol.
Collapse
Affiliation(s)
- Jingpeng Han
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Yongjian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Yingjian Gong
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Xuan Tang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, 400044, Chongqing, P. R. China.
| |
Collapse
|
5
|
Wei YM, Ma XD, Wang MF, Duan XF. Synergism of Fe/Ti Enabled Regioselective Arene Difunctionalization. J Am Chem Soc 2023; 145:1542-1547. [PMID: 36622693 DOI: 10.1021/jacs.2c13207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regioselective difunctionalization of arenes remains a long-standing challenge in organic chemistry. We report a novel and general Fe/Ti synergistic methodology for regioselective synthesis of various polysubstituted arenes through either E/E' or Nu/E ortho difunctionalizations of arenes. Preliminary results showed that an unprecedented 1,2-Fe/Ti heterobimetallic arylene intermediate bearing two distinct C-M bonds is essential to the regioselective difunctionalization.
Collapse
Affiliation(s)
- Yi-Ming Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Fei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Liu L, Du L, Li B. Recent advances in 8π electrocyclization reactions. Chem Commun (Camb) 2023; 59:670-687. [PMID: 36597987 DOI: 10.1039/d2cc04805a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Medium-ring systems, which constitute a class of structurally intriguing and biologically important molecules, are present in many natural products and pharmaceuticals. However, the construction of these skeletons tends to be difficult because of the torsional strain of the medium-sized ring, and control of the selectivity is also challenging in these flexible skeletons. Electrocyclization is one of the most straightforward methods to construct medium-sized rings and this process typically proceeds in a stereospecific manner, resulting in the stereo-controlled formation of two neighboring stereocenters. At present, there are few studies on 8π electrocyclization, mainly focusing on the synthesis of small molecules, while the applications in the synthesis of functional materials and biological contexts are rare. This feature article highlights recent advances, from 2000 to 2022, in the 8π electrocyclization reaction. This study is organized into four sections based on the size/composition of the target ring, including the synthesis of aza-seven-membered, cycloheptene, cyclooctene and bicyclo[4,2,0]octane frameworks. We expect that this feature article will provide beneficial guidance for the selective construction of medium-ring skeletons.
Collapse
Affiliation(s)
- Lei Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Luan Du
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
7
|
Ravi Kishore D, Sreenivasulu C, Satyanarayana G, Dapkekar AB. Recent Applications on Dual-Catalysis for C–C and C–X Cross-Coupling Reactions. SYNOPEN 2022. [DOI: 10.1055/a-1896-4168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractCoupling reactions stand amid the most significant reactions in synthetic organic chemistry. Of late, these coupling strategies are being viewed as a versatile synthetic tool for a wide range of organic transformations in many sectors of chemistry, ranging from indispensable synthetic scaffolds and natural products of biological significance to novel organic materials. Further, the use of dual-catalysis in accomplishing various interesting cross-coupling transformations is an emerging field in synthetic organic chemistry, owing to their high catalytic performance rather than the use of a single catalyst. In recent years, synthetic organic chemists have given considerable attention to hetero-dual catalysis; wherein these catalytic systems have been employed for the construction of versatile carbon–carbon [C(sp
3)–C(sp
3), C(sp
3)–C(sp
2), C(sp
2)–C(sp
2)] and carbon–heteroatom (C–N, C–O, C–P, C–S) bonds. Therefore, in this mini-review, we are emphasizing recently developed various cross-coupling reactions catalysed by transition-metal dual-catalysis (i.e., using palladium and copper catalysts, but omitting the reports on photoredox/metal catalysis).1 Introduction2 Cu/Pd-Catalysed Bond Formation2.1 Pd/Cu-Catalysed C(sp
3)–C(sp
2) Bond Formation2.2 Pd/Cu-Catalysed C(sp
2)–C(sp
2) Bond Formation2.3 Pd/Cu-Catalysed C(sp)–C(sp
2) Bond Formation2.4 Pd/Cu-Catalysed C(sp
3)–C(sp
3) Bond Formation2.5 Pd/Cu-Catalysed C–X (X = B, N, P, S, Si) Bond Formation3 Conclusion
Collapse
|
8
|
Bera SK, Mal P. Regiodivergent C-N Coupling of Quinazolinones Controlled by the Dipole Moments of Tautomers. Org Lett 2022; 24:3144-3148. [PMID: 35446038 DOI: 10.1021/acs.orglett.2c00847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein, we report that the dipole moments of tautomers can be the controlling factor for regiodivergent synthesis of either 14H-quinazolino[3,2-f]phenanthridin-14-ones or 6H-quinazolino[1,2-f]phenanthridin-6-ones, selectively, from unmasked 2-([1,1'-biphenyl]-2-yl)quinazolin-4(3H)-one. An intramolecular C(sp2)-NH coupling reaction mediated by PhI(OCOOCF3)2 could lead to two different regioisomers selectively at different temperatures when the dielectric constants of solvents like hexafluoroisopropanol and trifluoroacetic acid matched with the tautomer's dipole moments.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|