1
|
Jelínková K, Závodná A, Kaleta J, Janovský P, Zatloukal F, Nečas M, Prucková Z, Dastychová L, Rouchal M, Vícha R. Two Squares in a Barrel: An Axially Disubstituted Conformationally Rigid Aliphatic Binding Motif for Cucurbit[6]uril. J Org Chem 2023; 88:15615-15625. [PMID: 37882436 PMCID: PMC10661032 DOI: 10.1021/acs.joc.3c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Novel binding motifs suitable for the construction of multitopic guest-based molecular devices (e.g., switches, sensors, data storage, and catalysts) are needed in supramolecular chemistry. No rigid, aliphatic binding motif that allows for axial disubstitution has been described for cucurbit[6]uril (CB6) so far. We prepared three model guests combining spiro[3.3]heptane and bicyclo[1.1.1]pentane centerpieces with imidazolium and ammonium termini. We described their binding properties toward CB6/7 and α-/β-CD using NMR, titration calorimetry, mass spectrometry, and single-crystal X-ray diffraction. We found that a bisimidazolio spiro[3.3]heptane guest forms inclusion complexes with CB6, CB7, and β-CD with respective association constants of 4.0 × 104, 1.2 × 1012, and 1.4 × 102. Due to less hindering terminal groups, the diammonio analogue forms more stable complexes with CB6 (K = 1.4 × 106) and CB7 (K = 3.8 × 1012). The bisimidazolio bicyclo[1.1.1]pentane guest forms a highly stable complex only with CB7 with a K value of 1.1 × 1011. The high selectivity of the new binding motifs implies promising potential in the construction of multitopic supramolecular components.
Collapse
Affiliation(s)
- Kristýna Jelínková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Aneta Závodná
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Jiří Kaleta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí
2, Praha 16000, Czech Republic
| | - Petr Janovský
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Filip Zatloukal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Marek Nečas
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlářská 2, Brno 602 00, Czech Republic
| | - Zdeňka Prucková
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Lenka Dastychová
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Michal Rouchal
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| | - Robert Vícha
- Department
of Chemistry, Faculty of Technology, Tomas
Bata University in Zlín, Vavrečkova 5669, Zlín 760 01, Czech Republic
| |
Collapse
|
2
|
Andreoni L, Beneventi GM, Giovanardi G, Cera G, Credi A, Arduini A, Secchi A, Silvi S. A Multiresponsive Calix[6]arene Pseudorotaxane Empowered by Fluorophoric Dansyl Groups. Chemistry 2023; 29:e202203472. [PMID: 36929373 DOI: 10.1002/chem.202203472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 03/18/2023]
Abstract
We report the synthesis and characterization, by means of NMR and UV-visible spectroscopy and electrochemical techniques, of a dansyl calix[6]arene derivative and of its pseudorotaxane complex with a bipyridinium-based axle. This novel macrocycle shows remarkable complexation ability, in analogy with parent compounds, while the dansyl moieties impart valuable features to the system. Indeed, these units: i) signal the state of the system by fluorescence; ii) can be reversibly protonated, enabling the modulation of the complexation abilities of the macrocycle; iii) participate in photoinduced electron transfer processes, which may be exploited to tune the stability of the supramolecular complex. Therefore, in this multiresponsive pseudorotaxane, the threading and de-threading motions of the molecular components can be modulated either by protonation of the calixarene host or by reduction of the bipyridinium guest, which can be accomplished both by electrochemical reduction and via photoinduced electron transfer. Overall, three orthogonal and reversible stimuli can be used to induce molecular movements of the pseudorotaxane components.
Collapse
Affiliation(s)
- Leonardo Andreoni
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.,CLAN-Center for Light Activated Nanostructures, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129, Bologna, Italy
| | | | - Gabriele Giovanardi
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.,CLAN-Center for Light Activated Nanostructures, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
3
|
Liu E, Cherraben S, Boulo L, Troufflard C, Hasenknopf B, Vives G, Sollogoub M. A molecular information ratchet using a cone-shaped macrocycle. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
5
|
Hertzog JE, Maddi VJ, Hart LF, Rawe BW, Rauscher PM, Herbert KM, Bruckner EP, de Pablo JJ, Rowan SJ. Metastable doubly threaded [3]rotaxanes with a large macrocycle. Chem Sci 2022; 13:5333-5344. [PMID: 35655545 PMCID: PMC9093191 DOI: 10.1039/d2sc01486f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Ring size is a critically important parameter in many interlocked molecules as it directly impacts many of the unique molecular motions that they exhibit. Reported herein are studies using one of the largest macrocycles reported to date to synthesize doubly threaded [3]rotaxanes. A large ditopic 46 atom macrocycle containing two 2,6-bis(N-alkyl-benzimidazolyl)pyridine ligands has been used to synthesize several metastable doubly threaded [3]rotaxanes in high yield (65-75% isolated) via metal templating. Macrocycle and linear thread components were synthesized and self-assembled upon addition of iron(ii) ions to form the doubly threaded pseudo[3]rotaxanes that could be subsequently stoppered using azide-alkyne cycloaddition chemistry. Following demetallation with base, these doubly threaded [3]rotaxanes were fully characterized utilizing a variety of NMR spectroscopy, mass spectrometry, size-exclusion chromatography, and all-atom simulation techniques. Critical to the success of accessing a metastable [3]rotaxane with such a large macrocycle was the nature of the stopper group employed. By varying the size of the stopper group it was possible to access metastable [3]rotaxanes with stabilities in deuterated chloroform ranging from a half-life of <1 minute to ca. 6 months at room temperature potentially opening the door to interlocked materials with controllable degradation rates.
Collapse
Affiliation(s)
- Jerald E Hertzog
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| | - Vincent J Maddi
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| | - Laura F Hart
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Benjamin W Rawe
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Phillip M Rauscher
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Katie M Herbert
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
| | - Eric P Bruckner
- Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory 9700 S. Cass Ave., Lemont IL 60434 USA
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory 9700 S. Cass Ave., Lemont IL 60434 USA
| |
Collapse
|
6
|
Scelle J, Vervoitte H, Bouteiller L, Chamoreau LM, Sollogoub M, Vives G, Hasenknopf B. Size-dependent compression of threaded alkyldiphosphate in head to head cyclodextrin [3]pseudorotaxanes. Chem Sci 2022; 13:2218-2225. [PMID: 35310501 PMCID: PMC8864808 DOI: 10.1039/d1sc05697b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
The encapsulation of guests in a confined space enables unusual conformations and reactivities. In particular, the compression of akyl chains has been obtained by self-assembled molecular capsules but such an effect has not been reported in solution for pseudorotaxane architectures. By exploiting the tendency of cyclodextrin (CD) to form head to head [3]pseudorotaxanes and the hydrogen bonding abilities of phosphate groups, we have studied the effect of the CD dimer cavity on the conformation of threaded α,ω-alkyl-diphosphate axles. The formation of [2]pseudorotaxanes and [3]pseudorotaxanes was investigated by a combination of NMR, ITC and X-ray diffraction techniques. In the solid state, the [3]pseudorotaxane with a C8 axle presents a fully extended conformation with both terminal phosphate groups interacting with hydroxyl groups of the primary rim of CDs. Such hydrogen bonding interactions are also present with the C9 and C10 axles resulting in a compression of the alkyl chain with gauche conformations in the solid state. NMR studies have shown that this effect is maintained in solution resulting in a size-dependent progressive compression of the alkyl chain by the CD [3]pseudorotaxane architecture for C9, C10 and C11 axles. Alkyl chain compression of alkanediphosphate guests was achieved by head-to-head cyclodextrin [3]pseudorotaxanes in a mechanostereoselective self-assembly process.![]()
Collapse
Affiliation(s)
- Jérémy Scelle
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Hugo Vervoitte
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Lise-Marie Chamoreau
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Guillaume Vives
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| | - Bernold Hasenknopf
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire 4 Place Jussieu 75005 Paris France
| |
Collapse
|