1
|
Zuo W, Zheng R, Huang Y, Geng X, Zuo L, Wang L. Oxygen Migration-Defluorination Strategy Enables the Aminocarbonylation of Enaminones with o-Aminobenzamides and CF 2Br 2. Org Lett 2025; 27:2274-2278. [PMID: 39994848 DOI: 10.1021/acs.orglett.5c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The development of different concept approaches and user-friendly carbonyl surrogates for aminocarbonylation is highly desirable. Herein, we report the photocatalytic aminocarbonylation of enaminones with easily available o-aminobenzamides and CF2Br2 through an oxygen migration-defluorination strategy. The reaction features switchable transformation for the construction of carbamoyl-substituted enaminones and enol products and allows the expedient synthesis of fully substituted maleimides under mild reaction conditions.
Collapse
Affiliation(s)
- Wanqing Zuo
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Renhua Zheng
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Yinghong Huang
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Xiao Geng
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Lingling Zuo
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Lei Wang
- Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| |
Collapse
|
2
|
Wu CY, Chen XL, Yang DS, Tang YX, Wang LS, Du YD, Wu YD, Wu AX. Difluorocarbene-Enabled Trifluoromethylation and Cyclization for the Synthesis of 3-(Trifluoromethyl)-4 H-pyrans. Org Lett 2024; 26:8589-8593. [PMID: 39329447 DOI: 10.1021/acs.orglett.4c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A three-component annulation reaction and trifluoromethylation for the construction of 3-(trifluoromethyl)-4H-pyrans using β-CF3-1,3-enynes, BrCF2CO2Et, and sulfoxonium ylides as readily available substrates has been developed. This metal-free process involves two C-F bond cleavages of β-CF3-1,3-enynes and a CF3 group generated in situ from BrCF2CO2Et. This method is applicable to the late-stage modification of pharmaceutically active molecules.
Collapse
Affiliation(s)
- Chun-Yan Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiang-Long Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Dong-Sheng Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yong-Xing Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Li-Sheng Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yong-Dong Du
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yan-Dong Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - An-Xin Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Cao P, Fan G, Zhao X, Ren X, Wang Y, Wang Y, Gao Q. Regioselective synthesis of 3,4-diarylpyrimido[1,2- b]indazole derivatives enabled by iron-catalyzed ring-opening of styrene oxides. Chem Commun (Camb) 2024; 60:11742-11745. [PMID: 39319418 DOI: 10.1039/d4cc03910f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The first synthesis of 3,4-diarylpyrimido[1,2-b]indazole derivatives from 3-aminoindazoles has been realized. The FeCl3-catalyzed intermolecular epoxide ring-opening reaction altered the order of annulation, with the free primary NH2 groups in 3-aminoindazoles preferentially reacting with styrene oxides instead of aromatic aldehydes. This protocol is further highlighted by its broad substrate compatibility, high chemo- and regioselectivities, and the late-stage modifications of bioactive molecules. Without aromatic aldehydes, the synthesis of 3-aryl-4-acylpyrimido[1,2-b]indazole derivatives can also be accomplished using alternative reaction conditions.
Collapse
Affiliation(s)
- Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xiaofei Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Xinyu Ren
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuru Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yuying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
4
|
You X, Wang B, Wen F, Li Z. Construction of pyrazolo[1,5- a]pyrimidines and pyrimido[1,2- b]indazoles with calcium carbide as an alkyne source. Org Biomol Chem 2024; 22:5822-5826. [PMID: 38953741 DOI: 10.1039/d4ob00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
An efficient method for the construction of 5-arylpyrazolo[1,5-a]pyrimidines using calcium carbide as a solid alkyne source instead of flammable and explosive gaseous acetylene, pyrazole-3-amine and (hetero)aromatic aldehydes as starting materials in the presence of a copper mediator is described. Meanwhile, 2-arylpyrimido[1,2-b]indazoles are also synthesized under similar conditions using indazole-3-amine as a substitute for pyrazole-3-amine as a starting material. The method has salient features such as the use of an inexpensive and easy-to-handle alkyne source, commercially available substrates, wide functional group tolerance, a low-cost mediator, and simple workup procedures. This protocol can also be extended to gram-scale synthesis.
Collapse
Affiliation(s)
- Xinjie You
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Botao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Fei Wen
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University, Lanzhou 730022, P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
5
|
Feng H, Huo J, Mu X, Zheng R, Geng X, Wang L. BPO-promoted [4 + 2] cyclization of enaminones and o-phenylenediamines to 2-acyl quinoxalines via a cascade transamination and C-H amination. Org Biomol Chem 2024; 22:4067-4071. [PMID: 38717162 DOI: 10.1039/d4ob00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Rapid assembly of quinoxalines in a single step from readily available precursors has been recognized as an ideal platform in terms of efficiency and operation. Herein, we report a BPO-promoted metal-free approach to 2-acyl quinoxalines from enaminones and o-phenylenediamines via cascade transamination and C-H amination. This methodology demonstrates excellent compatibility with various substrates, including o-hydroxy enaminones, drug derivatives and natural products under mild reaction conditions.
Collapse
Affiliation(s)
- Heng Feng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
- Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Jie Huo
- Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Xiaonan Mu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
- Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Renhua Zheng
- Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Xiao Geng
- Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Lei Wang
- Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| |
Collapse
|
6
|
Zhao P, Liu Y, Zhang Y, Wang L, Ma Y. Photodriven Radical-Polar Crossover Cyclization Strategy: Synthesis of Pyrazolo[1,5- a]pyridines from Diazo Compounds. Org Lett 2024. [PMID: 38506402 DOI: 10.1021/acs.orglett.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
This work demonstrates the synthesis of a variety of perfluoroalkyl heterocycles via a visible-light-driven radical-polar crossover cyclization strategy. In this process, single-electron reduction/SNV-type/cyclization sequences follow the radical addition reaction of a diazoester, which differs from the current role of diazoesters as radical precursors/acceptors. This transformation demonstrates excellent functional group compatibility and allows for the modification of many bioactive molecules with diazoesters. Such a reaction could represent a novel approach to the photochemical transformation of diazo compounds.
Collapse
Affiliation(s)
- Peng Zhao
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Yanbo Liu
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Yuting Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| |
Collapse
|
7
|
Ma LL, Zhou Y, Tang YX, Chen T, Wang ZH, Wu YD, Wang JG, Wu AX. I 2-DMSO-Mediated Construction of 2,3- and 2,4-Disubstituted Pyrimido[1,2- b]indazole Skeletons. J Org Chem 2024; 89:3941-3953. [PMID: 38421294 DOI: 10.1021/acs.joc.3c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An efficient synthetic method for constructing 2,3- and 2,4-disubstituted pyrimidio[1,2-b]indazole skeletons through I2-DMSO-mediated and substrate-controlled regioselective [4 + 2] cyclization is reported. The reaction conditions are mild, its operation is simple, and the substrate scope is wide. More than 60 pyrimidio[1,2-b]indazole derivatives have been synthesized, providing a new methodology for constructing related molecules and potentially enriching bioactive-molecule libraries.
Collapse
Affiliation(s)
- Lin-Lin Ma
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yong-Xing Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ting Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zheng-Hao Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jun-Gang Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
8
|
Jayaram A, Seenivasan VT, Govindan K, Liu YM, Chen NQ, Yeh TW, Venkatachalam G, Li CH, Leung TF, Lin WY. Base-promoted triple cleavage of CCl 2Br: a direct one-pot synthesis of unsymmetrical oxalamide derivatives. Chem Commun (Camb) 2024; 60:3079-3082. [PMID: 38406884 DOI: 10.1039/d4cc00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We present a novel, eco-friendly and one-pot approach for synthesizing unsymmetrical oxalamides with the aid of dichloroacetamide and amine/amides in the presence of CBr4 in a basic medium. The use of water as a potent supplement for the oxygen atom source and the detailed mechanism have been disclosed. Moreover, the protocol involves triple cleavage of CCl2Br and the formation of new C-O/C-N bonds, with the advantage of achieving selective bromination using CBr4 with good to excellent yield under mild conditions. The method also demonstrates promise for industrial use, as proven by its effective implementation in gram-scale synthesis conducted in a batch process, along with its utilization in a continuous-flow system.
Collapse
Affiliation(s)
- Alageswaran Jayaram
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | | | - Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Yu-Ming Liu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Nian-Qi Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Ting-Wei Yeh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Gokulakannan Venkatachalam
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Chien-Hung Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
| | - Tsz-Fai Leung
- Department of Chemistry, National Sun Yat-sen University, Taiwan, Republic of China
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Taiwan, Republic of China
| |
Collapse
|
9
|
Gao Q, Guo Y, Cao P, Fan G, Xu Y. Regioselective synthesis of indazolo[2,3- a]quinazolines enabled by I 2/S-facilitated annulation relay dehydrogenative aromatization of cyclohexanones. Chem Commun (Camb) 2023; 59:13835-13838. [PMID: 37921123 DOI: 10.1039/d3cc04698b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
A method for concise and efficient synthesis of indazolo[2,3-a]quinazolines has been developed via a sequential annulation of 3-aminoindazoles and dehydrogenative aromatization of cyclohexanones. This high regioselectivity is attributed to the fact that the Mannich reaction is superior to the aldol reaction in this system. It is worth mentioning that this convenient process is successfully extended to 3-aminopyrazoles for assembling another class of medicinally prevalent pyrazolo[1,5-a]quinazolines.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Key Laboratory of Biomedical Information Research, Henan International Joint Laboratory of Neural Information analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
10
|
Zuo W, Zuo L, Geng X, Li Z, Wang L. Radical-Polar Crossover Enabled Triple Cleavage of CF 2Br 2: A Multicomponent Tandem Cyclization to 3-Fluoropyrazoles. Org Lett 2023; 25:6062-6066. [PMID: 37552672 DOI: 10.1021/acs.orglett.3c02305] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The elaboration of step-economy and catalytic approaches for accessing diverse fluorinated heterocyclics is highly desirable. Described herein is a radical-polar crossover enabled three-component cyclization to polysubstituted fluoropyrazoles by using CF2Br2 as a novel C1F1 synthon. Mechanistic experiments revealed that the in situ generation of the reactive intermediate gem-difluorovinylimine ion is the key to this transformation. This protocol unlocks the novel reactivity of CF2Br2 and adds significant synthetic values to fluorine chemistry.
Collapse
Affiliation(s)
- Wanqing Zuo
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang. P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang. P. R. China
| | - Lingling Zuo
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang. P. R. China
| | - Xiao Geng
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang. P. R. China
| | - Zhifang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang. P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang. P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
11
|
Cao D, Wang C, Wan JP, Wen C, Liu Y. Tunable vicinal, geminal diphosphorylation and C-N bond phosphorylation of enaminones toward divergent phosphorylated ketone derivatives. Chem Commun (Camb) 2023; 59:6383-6386. [PMID: 37157911 DOI: 10.1039/d3cc01427d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper reports the trifunctionalization reactions of tertiary enaminones in the fashion of selective gem- and vicinal diphosphorylation, leading to the tunable synthesis of α,α- and α,β-diphosphoryl ketones. In addition, the C-N bond phosphorylation with improved substrate tolerance has been achieved.
Collapse
Affiliation(s)
- Dingsheng Cao
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Chaoli Wang
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
12
|
Zhou Y, Lei SG, Wang LS, Ma JT, Yu ZC, Wu YD, Wu AX. I 2-Promoted gem-Diarylethene Involved Aza-Diels-Alder Reaction and Wagner-Meerwein Rearrangement: Construction of 2,3,4-Trisubstituted Pyrimido[1,2- b]indazole Skeletons. Org Lett 2023; 25:3386-3390. [PMID: 37154544 DOI: 10.1021/acs.orglett.3c00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A [3 + 1 + 2] cyclization-rearrangement reaction scheme was developed to synthesize pyrimido[1,2-b]indazoles from aryl methyl ketones, 3-aminoindazoles, and gem-diarylethenes. This metal-free process proceeds via a sequential aza-Diels-Alder reaction and Wagner-Meerwein rearrangement, and a possible reaction mechanism was demonstrated based on control experiments. This method exhibits good substrate compatibility and allows simple reaction conditions. Moreover, the products display significant aggregation-induced emission characteristics after simple modifications.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
13
|
Zhao P, Wang L, Guo X, Chen J, Liu Y, Wang L, Ma Y. Visible Light-Driven α-Diazoketones as Denitrogenated Synthons: Synthesis of Fluorinated N-Heterocycles via Multicomponent Cyclization Reactions. Org Lett 2023; 25:3314-3318. [PMID: 37126458 DOI: 10.1021/acs.orglett.3c01145] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We disclose herein an efficient photochemical formal [3+2+1] annulation strategy for the transformation of diazocarbonyl compounds into various fluorinated nitrogen-containing heterocycles. This transformation is characterized by reacting fluoroalkyl radicals with α-diazoketones, which are used as infrequent denitrogenated synthons under visible light. Moreover, a wide range of N-heterocycles containing precious CF3 and perfluoroalkylated groups are constructed in moderate to good yields. Notably, this photochemical strategy may provide a fruitful path for the synthesis of complex organofluorides via diazo/fluorine/radical chemistry.
Collapse
Affiliation(s)
- Peng Zhao
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Lingfeng Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Xiaoshuang Guo
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jiayi Chen
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Yanbo Liu
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| |
Collapse
|
14
|
Hu X, Guo H, Jiang H, Zheng R, Zhou Y, Wang L. Visible-light-induced C(sp 3)-H thiocyanation of pyrazolin-5-ones: a practical synthesis of 4-thiocyanated 5-hydroxy-1 H-pyrazoles. Org Biomol Chem 2023; 21:2232-2235. [PMID: 36810647 DOI: 10.1039/d3ob00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A direct, aerobic and visible light photocatalytic approach to synthesize 4-thiocyanated 5-hydroxy-1H-pyrazoles via cross-coupling of pyrazolin-5-ones with ammonium thiocyanate is described. Under redox-neutral and metal-free conditions, a series of 4-thiocyanated 5-hydroxy-1H-pyrazoles could be easily and efficiently obtained in good to high yields by using low-toxicity and inexpensive ammonium thiocyanate as the thiocyanate source.
Collapse
Affiliation(s)
- Xiurong Hu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Haichang Guo
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Huajiang Jiang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Renhua Zheng
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Yaqin Zhou
- Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| | - Lei Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China. .,Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| |
Collapse
|
15
|
Tian S, Liu Y, Wan C, Wan JP, Hao G. Catalyst-Free Cascade Annulation of Enaminones and Aryl Diazonium Tetrafluoroboronates for Cinnoline Synthesis and the Anti-Inflammatory Activity Study. J Org Chem 2023; 88:2433-2442. [PMID: 36753776 DOI: 10.1021/acs.joc.2c02858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A simple and concise method for the synthesis of cinnolines has been developed by the reactions of readily available enaminones and aryl diazonium tetrafluoroboronates. The reactions run efficiently to provide cinnolines with broad diversity in the substructure by heating in dimethyl sulfoxide without using any catalyst or additive. In addition, the primary investigation of the anti-inflammatory activity of these products leads to the observation of p-chlorobenzoyl (3f) and p-nitrobenzoyl (3j) cinnolines as attractive anti-inflammatory compounds in vitro.
Collapse
Affiliation(s)
- Shanghui Tian
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Changfeng Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
16
|
Li H, Shen M, Li B, Zhang X, Fan X. Solvent-Dependent Selective Synthesis of CF 3-Tethered Indazole Derivatives Based on Multiple Bond Activations. Org Lett 2023; 25:720-725. [PMID: 36706028 DOI: 10.1021/acs.orglett.2c04003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Presented herein is a solvent-dependent selective synthesis of CF3-tethered indazole derivatives via the cascade reactions of 1-arylpyrazolidinones with trifluoromethyl ynones. Mechanistically, the formation of the title products involves cascade N-H/C-H/C-N/C-C bond cleavage along with pyrazole ring formation and pyrazolidinone ring opening. For the formation of a pyrazole scaffold, 1-phenylpyrazolidinone acts as a C2N2 synthon, while trifluoromethyl ynone serves as a C1 synthon. Meanwhile, trifluoromethyl ynone also acts as an enol unit to facilitate the ring opening of the pyrazolidinone ring and provide a trifluoropropenoxy fragment via cleavage of the alkynyl triple bond and migration of the cleaved moiety. When the reaction was run in trifluoroethanol instead of DCE, it selectively afforded indazole derivatives tethered with a trifluoroethoxy moiety through in situ transesterification. To our knowledge, this is the first synthesis of CF3-tethered indazole derivatives via concurrent alkynyl activation, pyrazole formation, and CF3 migration.
Collapse
Affiliation(s)
- Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengyang Shen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Huo J, Geng X, Li W, Zhang P, Wang L. A Traceless Heterocyclic Amine Mediator in Regioselectivity-Switchable Formal [1 + 2 + 2] Cycloaddition Reaction to 1,3,4- and 1,4,5-Trisubstituted Pyrazoles. Org Lett 2023; 25:512-516. [PMID: 36633471 DOI: 10.1021/acs.orglett.2c04227] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Switchable multicomponent reactions have been attractive tools for the construction of compound libraries with skeleton diversity and complexity by slightly changing the reaction conditions. Described herein is a regioselectivity-switchable formal [1 + 2 + 2] cycloaddition reaction from difluoroalkyl compounds, enaminones, and RNHNH2, ultimately using 1-methylindazol-3-amine as a traceless mediator to switch the inherent regioselectivity of 1,3,4-trisubstituted pyrazole formation to 1,4,5-trisubstituted pyrazoles. Remarkable features of this work include mild conditions, simple operation, and broad scopes.
Collapse
Affiliation(s)
- Jie Huo
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Xiao Geng
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
18
|
Chen K, Zhao B, Liu Y, Wan JP. Thiazole-5-carbaldehyde Synthesis by Cascade Annulation of Enaminones and KSCN with Dess-Martin Periodinane Reagent. J Org Chem 2022; 87:14957-14964. [PMID: 36260927 DOI: 10.1021/acs.joc.2c01881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Dess-Martin periodinane (DMP) reagent-mediated reactions of tertiary enaminones with potassium thiocyanate for the synthesis of thiazole-5-carbaldehydes are developed. The product formation involves cascade hydroxyl thiocyanation of the C═C double bond, intramolecular hydroamination of the C≡N bond, and thiazole annulation by condensation on the ketone carbonyl site, representing novel reaction pathways in the reactions between enaminones and thiocyanate salt. DMP plays dual roles in mediating the free radical thiocyanation and inducing the unconventional selective thiazole-5-carbaldehyde formation by masking the in situ generated formyl group during the reaction process.
Collapse
Affiliation(s)
- Kang Chen
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Yunyun Liu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Jie-Ping Wan
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
19
|
Feng G, Meng J, Xu S, Gao Y, Zhu Y, Huang Z. Copper-catalyzed cross coupling reaction of sulfonyl hydrazides with 3-aminoindazoles. RSC Adv 2022; 12:30432-30435. [PMID: 36337965 PMCID: PMC9594103 DOI: 10.1039/d2ra05956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023] Open
Abstract
A novel Cu-catalyzed radical-radical cross coupling reaction of 3-aminoindazoles with sulfonyl hydrazides has been disclosed, enabling the production of diverse 1,3-substituted aminoindazoles in good yields. This methodology is distinguished by readily available starting materials, wide substrate scope and operational simplicity. In addition, a gram-scale reaction has been well demonstrated.
Collapse
Affiliation(s)
- Guipeng Feng
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Jie Meng
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University Jinan 250012 P.R. China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Yao Gao
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Yingying Zhu
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| | - Ziyu Huang
- School of Pharmacy, Xinxiang University Xinxiang 453003 P. R. China
| |
Collapse
|
20
|
Gao R, Wang F, Geng X, Li CY, Wang L. Visible-Light-Initiated Difunctionalization of Quinoxalin-2(1 H)-ones with Acyloxy Nitroso Compounds. Org Lett 2022; 24:7118-7122. [DOI: 10.1021/acs.orglett.2c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Runye Gao
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Fang Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Xiao Geng
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Chuan-Ying Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
21
|
Qu Z, Ji X, Tang S, Deng GJ, Huang H. Hydrogen-Borrowing Reduction/Dehydrogenative Aromatization of Nitroarenes through Visible-Light-Induced Energy Transfer: An Entry to Pyrimidoindazoles and Carbazoles. Org Lett 2022; 24:7173-7177. [DOI: 10.1021/acs.orglett.2c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China
| |
Collapse
|
22
|
Zeng J, Wan JP, Liu Y. Photocatalytic C–H Thiocyanation of NH 2-Enaminones and the Tunable Synthetic Routes to 2-Aminothiazoles and 2-Thiazolinones. J Org Chem 2022; 87:13195-13203. [DOI: 10.1021/acs.joc.2c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junlong Zeng
- National Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Jie-Ping Wan
- National Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yunyun Liu
- National Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Zhejiang 312000, P.R. China
| |
Collapse
|
23
|
Guo Y, Gao Q. Recent advances in 3-aminoindazoles as versatile synthons for the synthesis of nitrogen heterocycles. Org Biomol Chem 2022; 20:7138-7150. [PMID: 36043318 DOI: 10.1039/d2ob01348g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-based heterocycles are an important class of structural scaffolds distributed in biologically active natural products, medicinal chemistry, and agrochemicals. Hence, there is increasing interest in the development of novel synthetic strategies for the construction of these privileged structural motifs. Recently, 3-aminoindazoles have emerged as versatile synthons participating in a variety of condensation annulation, denitrogenative transannulation and rearrangement ring expansion reactions, which provide efficient synthetic routes for the formation of nitrogen heterocycles. This review systematically highlights for the first time the most recent advances in 3-aminoindazoles to provide a deep understanding of using 3-aminoindazoles as versatile synthons in organic transformations for synthetic and medicinal chemists.
Collapse
Affiliation(s)
- Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
24
|
Guo Y, Huang PF, Xiong BQ, Fan JH, Liu Y. Cu-catalyzed oxidative denitrogenation of 3-aminoindazoles for the synthesis of isoquinolinones. Org Biomol Chem 2022; 20:6844-6853. [PMID: 35968914 DOI: 10.1039/d2ob01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-catalyzed oxidative dual arylation of active alkenes via the cleavage of two C-N bonds of 3-aminoindazoles is presented for constructing isoquinolinones. Importantly, 3-aminoindazoles are used as efficient arylating agents through a radical process. This method has a good substrate scope and functional group compatibility.
Collapse
Affiliation(s)
- Yang Guo
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
25
|
Huo J, Geng X, Li W, Zhang P, Wang L. Photoinduced Three‐Component Cyclization of Arylamines, Enaminones and Difluorobromoacetates to 2,3‐Difunctionalized Quinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | - Lei Wang
- Huaibei Coal Teachers College CHINA
| |
Collapse
|
26
|
qin Z, Ma R, Ying S, Li F, Ma Y. Synthesis of substituted pyrimido[1,2‐b]indazoles through [3+2+1] cyclization of 3‐aminoindazoles, ketones and N,N‐dimethylaminoethanol as one carbon synthon. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Fanzhu Li
- Zhejiang Chinese Medical University CHINA
| | | |
Collapse
|
27
|
Wu H, Luo T, Wan JP, Jiang J, Liu Y. Nickel‐Catalyzed Tandem Ring Contraction of TEMPO and C‐N Bond Transamination of Enaminones toward Amino Diversity of Enaminones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haozhi Wu
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Tian Luo
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Jie-Ping Wan
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Jianwen Jiang
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Yunyun Liu
- Jiangxi Normal University College of Chemistry and Chemical Engineering 99 Ziyang Road 330022 Nanchang CHINA
| |
Collapse
|
28
|
Liu Y, Zhang T, Wan JP. Ultrasound-Promoted Synthesis of α-Thiocyanoketones via Enaminone C═C Bond Cleavage and Tunable One-Pot Access to 4-Aryl-2-aminothiazoles. J Org Chem 2022; 87:8248-8255. [PMID: 35616657 DOI: 10.1021/acs.joc.2c00708] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasound has been successfully employed to promote the thiocyanation of the C═C bond in enaminones for the synthesis of α-thiocyanoketones and 2-aminothiazoles. The reactions of enaminones with ammonium thiocyanate provide α-thiocyanoketones with ultrasound irradiation at room temperature. More interestingly, simply further heating the vessel after ultrasonic irradiation leads to the selective synthesis of 2-aminothiazoles with an unconventional 4-aryl substructure.
Collapse
Affiliation(s)
- Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
29
|
Xu Z, Geng X, Cai Y, Wang L. A Straightforward Approach to Fluorinated Pyrimido[1,2- b]indazole Derivatives via Metal/Additive-Free Annulation with Enaminones, 3-Aminoindazoles, and Selectfluor. J Org Chem 2022; 87:6562-6572. [PMID: 35486919 DOI: 10.1021/acs.joc.2c00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel and efficient three-component reaction with two C-N bonds and one C-F bond formation has been reported, which provides a straightforward route to a variety of fluorinated pyrimido[1,2-b]indazole derivatives. This transformation has the advantage of excellent functional group compatibility, including aliphatic and aromatic substituents enaminones. Moreover, metal and additives are not necessary for this reaction, which is of great significance for the synthesis and application of fluorinated heterocycles.
Collapse
Affiliation(s)
- Zhaoliang Xu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Yiwen Cai
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, PR China
| |
Collapse
|
30
|
Ghosh D, Ghosh S, Ghosh A, Pyne P, Majumder S, Hajra A. Visible light-induced functionalization of indazole and pyrazole: a recent update. Chem Commun (Camb) 2022; 58:4435-4455. [PMID: 35294515 DOI: 10.1039/d2cc00002d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Indazole and pyrazole are renowned as a prodigious class of heterocycles having versatile uses in medicinal as well as industrial chemistry. Considering sustainable approaches, recently, photocatalysis has become an indispensable tool in organic chemistry due to its application for the activation of small molecules and the use of a clean energy source. In this review, we have highlighted the use of metal-based photocatalysts, organic photoredox catalysts, energy transfer photocatalysts and electron-donor-acceptor complexes in the functionalization of indazole and pyrazole. This perspective is arranged based on the types of functionalization reactions on indazole and pyrazole. A detailed discussion regarding the reaction mechanism of each reaction is given to provide a comprehensive guide to the reader. Finally, a summary of existing challenges and the future outlook towards the development of efficient photocatalytic methods for functionalization of these heterocycles is also presented.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore 560027, Karnataka, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
31
|
Zhou Y, Wang LS, Lei SG, Gao YX, Ma JT, Yu ZC, Wu YD, Wu AX. I 2-Promoted site-selective C–C bond cleavage of aryl methyl ketones as C1 synthons for constructing 5-acyl-1 H-pyrazolo[3,4- b]pyridines. Org Chem Front 2022. [DOI: 10.1039/d2qo00676f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel iodine promoted [1 + 3 + 2] cleavage cyclization reaction for the synthesis of 1H-pyrazolo[3,4-b]pyridines from aryl methyl ketones, 5-aminopyrazoles and enaminones has been established.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yun-Xiang Gao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
32
|
Pan Z, Liu T, Ma Y, Yan J, Wang YJ. Construction of Quinazolin(thi)ones by Brønsted Acid/Visible-Light Photoredox Relay Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|