1
|
Dinda TK, Mal P. A Self-Sustaining Supramolecular (Auto)Photocatalysis via the Synthesis of N-Vinylacetamides. Chemistry 2025:e202404624. [PMID: 40192180 DOI: 10.1002/chem.202404624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Efforts to enhance photocatalysts prioritize improving their accessibility and practicality in photocatalytic applications. Supramolecular (auto)photocatalysis, which exploits transient self-assembled complexes, facilitates visible light-driven reactions, with autocatalytic systems promoting sustainable and atom-economical processes. In this study, the photocatalyst Mes-Acr-MeClO4, typically active under blue light, formed a dark red charge-transfer (CT) complex with N-bromoacetamide (NBA) in the presence of K2CO3 in DCE, enabling green-light photocatalysis. This self-assembled CT complex initiated an auto-photocatalytic process via two-photon absorption, generating an N-centered radical that drove anti-Markovnikov, syn-periplanar addition to phenylacetylene, achieving exclusive Z-selective formation of (Z)-N-(2-bromo-2-phenylvinyl)acetamide. Interestingly, the product itself functioned as a potent green-LED photocatalyst (λem = 518 nm, τ = 10 ns), driving its own synthesis with added terminal alkynes. With 100% atom economy, this work highlights a system chemistry approach, showcasing a highly efficient, self-sustaining catalytic process that advances green and sustainable synthetic strategies. This protocol emphasizes sustainability with an outstanding E-factor of 11.15, reflecting minimal waste production (11.15 kg per 1 kg of product) and demonstrating a strong commitment to green chemistry principles.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
2
|
Sahoo SR, Dinda TK, Saha S, Mal P, Goswami N. Maneuvering the Electronic State and Active Site of Assembled-Gold Nanoclusters through Polyoxometalate Implantation for Heterogeneous Green-Light Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19669-19681. [PMID: 40129310 DOI: 10.1021/acsami.4c23033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Gold nanoclusters (AuNCs) exhibit unique molecule-like optical and electronic properties, making them promising candidates for photocatalysis. However, their application as primary photocatalysts in heterogeneous systems is limited by rapid electron recombination, small size, and high solubility. To overcome these limitations, we developed an approach combining AuNCs assemblies with electron trap centers to enhance charge separation and electron transfer. Using a depletion-driven assembly method, Keggin-type polyoxometalates (POMs), Na10SiW9O34 (SiW9), were uniformly embedded within spherical assemblies of glutathione-protected AuNCs, forming gold superclusters (AuSCs). The resulting AuSCs@SiW9 exhibited complete photoluminescence quenching, enhanced metallicity, and stabilized photogenerated electrons via SiW9, enabling their use as primary photocatalysts. The AuSCs@SiW9 efficiently catalyzed the functionalization of terminal aryl alkyne with N-bromosuccinimide (NBS), achieving a tribromoketones yield of 94%, significantly outperforming AuSCs with lower or higher metallicity (38 and 65%, respectively). Mechanistic studies revealed that the improved gold metallicity in AuSCs@SiW9 promotes charge transfer complex formation with NBS, while SiW9 stabilizes photogenerated electrons, enhancing electron density under light irradiation. The AuSCs@SiW9 exhibited strong visible-light absorption, photostability, and solvent dispersibility, enabling recyclability for up to five cycles and scalability for broader applications. This strategy positions gold as a viable primary photocatalyst, expanding its potential in heterogeneous photocatalysis toward synthesizing small molecules.
Collapse
Affiliation(s)
- Satya Ranjan Sahoo
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhong Y, He Y, Hu Y, Yan X, Zhang R, Yi J, Zhao F, Fan B. Gold-Catalyzed Difunctionalization of Activated Alkynes with Organohalides: Access to 3-Arylated and Alkenylated Coumarin Derivatives. Org Lett 2025; 27:2180-2185. [PMID: 40013845 DOI: 10.1021/acs.orglett.5c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Coumarin skeletons are significant structural units frequently used in the fields of synthetic chemistry, medicinal chemistry, and materials science. Herein, we report a hemilabile P,N-ligand-assisted gold-catalyzed difunctionalization of activated alkynes with organohalides. The reaction occurs effectively under mild conditions without requiring an external oxidant, producing a variety of 3-arylated and alkenylated coumarin derivatives in high to excellent yields. This method demonstrates a wide substrate tolerance and superb functional group compatibility and is also suitable for heteroaromatic substrates. Further mechanistic investigations strongly support the proposed mechanism of the reaction.
Collapse
Affiliation(s)
- Yu Zhong
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Yuanhao He
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Yanfei Hu
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Xingming Yan
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Ruyi Zhang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Jumei Yi
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Fen Zhao
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Baomin Fan
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650504, China
| |
Collapse
|
4
|
Hu J, Volker B, Bogar M. Selective fluorescence sensors for Cu 2+ and Hg 2+ ions using acridinium-polymer complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125220. [PMID: 39357251 DOI: 10.1016/j.saa.2024.125220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
The photophysical properties of two acridinium derivatives, 9-phenyl-10-methylacridinium (Ph-Arc+) and 9-mesityl-10-methyl acridinium (Mes-Acr+) were investigated in aqueous solutions of poly(methacrylic acids) (PMAA) at various pH values with various polymer to dye (R/D) ratios. In acidic conditions, PMAA effectively turned on the emission of both acridinium derivatives. Micromolar concentrations of copper (II) ions can selectively turn off the emission of dye/PMAA mixtures with a linear response range from 0.50 to 10.0 µM and a detection limit as low as 0.38 µM. In near neutral conditions, Mes-Acr+ in PMAA solutions displayed extremely weak emission. However, trace amounts of Hg2+ ions can instantly turn on the emission with a low detection limit of 43.6 nM and a linear range between 1.0 to 10.0 µM. This analytical method is fast, cost-effective, and environmentally friendly, as it is conducted in 100 % aqueous solution with commercial acridinium derivatives and a biocompatible polymer.
Collapse
Affiliation(s)
- Jingqiu Hu
- West Chester University of Pennsylvania, 700 South High Street, West Chester, PA 19383, United States.
| | - Bryce Volker
- West Chester University of Pennsylvania, 700 South High Street, West Chester, PA 19383, United States
| | - Maima Bogar
- West Chester University of Pennsylvania, 700 South High Street, West Chester, PA 19383, United States
| |
Collapse
|
5
|
Dinda TK, Manna A, Nayek P, Mandal B, Mal P. Ultrasmall CsPbBr 3 Nanocrystals as a Recyclable Heterogeneous Photocatalyst in 100% E- and Anti-Markovnikov Sulfinylsulfonation of Terminal Alkynes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49411-49427. [PMID: 39238429 DOI: 10.1021/acsami.4c10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The precise synthesis of ultrasmall, monodisperse CsPbBr3 nanocrystals is crucial due to their enhanced photophysical properties resulting from strong quantum confinement effects. Traditional methods struggle with size control, complicating synthesis. Although CsPbBr3 nanocrystals find applications in LEDs and photovoltaics, their use in photocatalysis for organic reactions remains limited. Our study introduces ultrasmall TBIA-CsPbBr3 nanocrystals (∼5.6 nm), synthesized via a three-precursor hot injection method using tribromoisocyanuric acid (TBIA) as a bromine precursor for the first time. These nanocrystals exhibit a near-unity photoluminescence quantum yield (PLQY) of 0.99 and an elevated oxidation potential of +1.80 V. We demonstrate their efficacy as recyclable heterogeneous photocatalysts in a one-pot, 100% E-selective, anti-Markovnikov sulfinylsulfonation of terminal alkynes under visible light, achieving a high product conversion rate (PCR) of 62,500 μmol g-1 h-1 and recyclability for up to five cycles. Density functional theory (DFT) calculations support the exclusive formation of the E-isomer. TBIA-CsPbBr3 outperforms other CsPbBr3 perovskites in photocatalysis, with superior efficiency attributed to their extended excited-state lifetime and higher surface area, which accelerates the organic transformation process.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Anupam Manna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Pravat Nayek
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Bikash Mandal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
6
|
Kanti Bera S, Porcheddu A. Pioneering Metal-Free Late-Stage C-H Functionalization Using Acridinium Salt Photocatalysis. Chemistry 2024:e202402809. [PMID: 39136621 DOI: 10.1002/chem.202402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024]
Abstract
Using organic dyes as photocatalysts is an innovative approach to photocatalytic organic transformations. These dyes offer advantages such as widespread availability, adaptable absorption properties, and diverse chemical structures. Recent progress has led to the development of organic photocatalysts that can utilize visible light to modify chemically inert C-H bonds. These catalysts are sustainable, selective, and versatile, enabling mild reactions, late-stage functionalization, and various transformations in line with green chemistry principles. As catalysts in photoredox chemistry, they contribute to the development of efficient and environmentally friendly synthetic pathways. Acridinium-based organic photocatalysts have proved valuable in late-stage C-H functionalization, enabling transformative reactions under mild conditions. This review emphasizes their innovative features, such as organic frameworks, efficient light absorption properties, and their applications in modifying complex molecules. It provides an overview of recent advancements in the use of acridinium-based organic photocatalysts for late-stage C-H bond functionalization without the need for transition metals, showcasing their potential to expedite the development of new molecules and igniting excitement about the prospects of this research in the field.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| |
Collapse
|
7
|
Pal B, Sahoo S, Mal P. Atom Transfer Radical Addition Reactions of Quinoxalin-2(1 H)-ones with CBr 4 and Styrenes Using Mes-Acr-MeClO 4 Photocatalyst. J Org Chem 2024; 89:1784-1796. [PMID: 38214146 DOI: 10.1021/acs.joc.3c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The atom transfer radical addition (ATRA) reaction is defined as a method for introducing halogenated compounds into alkenes via a radical mechanism. In this study, we present an ATRA approach for achieving regioselective functionalization of quinoxalin-2(1H)-ones by activating C-Br bonds of CBr4 and subsequent trihaloalkyl-carbofunctionalization of styrenes employing the 9-mesityl-10-methylacridinium perchlorate (Fukuzumi) photocatalyst under 3W blue LED (450-470 nm) irradiation. This three-component radical cascade process demonstrates remarkable efficiency in the synthesis of 1-methyl-3-(3,3,3-tribromo-1-(4-chlorophenyl)propyl)quinoxalin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Buddhadeb Pal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Sathi Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
8
|
Tang Y, Pan W, Yang Y. Silver-Catalyzed Chlorocyclization for the Synthesis of 3-Chloro-2 H-chromenes. J Org Chem 2023. [PMID: 37410887 DOI: 10.1021/acs.joc.2c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
A silver-catalyzed chlorocyclization reaction of aryl 3-aryl-2-propyn-1-yl ethers in the presence of NCS under darkness was accomplished, which provides a straightforward and efficient access to 3-chloro-2H-chromenes.
Collapse
Affiliation(s)
- Yunhao Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Gaohai Road, Guiyang 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang 550014, P. R. China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Gaohai Road, Guiyang 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang 550014, P. R. China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Yuzhu Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Gaohai Road, Guiyang 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang 550014, P. R. China
| |
Collapse
|
9
|
Dinda TK, Mal P. Activation of C-Br Bond of CBr 4 and CBrCl 3 Using 9-Mesityl-10-methylacridinium Perchlorate Photocatalyst. J Org Chem 2023; 88:573-584. [PMID: 36516984 DOI: 10.1021/acs.joc.2c02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report the activation of the C-Br bond of CBrX3 (X = Cl, Br) using 9-mesityl-10-methylacridinium perchlorate as a visible-light (12W blue LED, 450-455 nm) photocatalyst for the synthesis of gem-dihaloenones from terminal alkynes. An electron transfer from CBrX3 to Mes-Acr-MeClO4 led to the formation of •+CBrX3 which subsequently resulted in the intermediate +CX3. Next, C-C cross-coupling of +CX3 with terminal alkynes was the key path to obtain the gem-dihaloenones. Radical trapping experiments with TEMPO, BHT, and Stern-Volmer quenching studies helped to understand that the reaction proceeded via the SET mechanism.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
10
|
Yan CY, Wu ZW, He XY, Ma YH, Peng XR, Wang L, Yang QQ. Visible-Light-Induced Tandem Radical Brominative Addition/Cyclization of Activated Alkynes with CBr 4 for the Synthesis of 3-Bromocoumarins. J Org Chem 2023; 88:647-652. [PMID: 36480338 DOI: 10.1021/acs.joc.2c01721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible-light-induced tandem radical brominative addition/spiro-cyclization/1,2-ester migration of activated alkynes with CBr4 is developed. This protocol features good functional group tolerance, operational simplicity, and mild reaction conditions without the use of catalysts and external additives, providing easy access to valuable 3-bromocoumarins in generally high yields.
Collapse
Affiliation(s)
- Chen-Yang Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Zheng-Wei Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Rong Peng
- GongAn County People's Hospital, No. 119, Chanling Avenue, Douhudi Town, Gongan County, Jingzhou, Hubei 434300, P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| |
Collapse
|
11
|
Sau S, Mal P. Visible-Light Promoted Regioselective Oxygenation of Quinoxalin-2(1 H)-ones Using O 2 as an Oxidant. J Org Chem 2022; 87:14565-14579. [PMID: 36214497 DOI: 10.1021/acs.joc.2c01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-mediated sustainable approach for metal-free oxygenation of quinoxalin-2(1H)-one by employing Mes-Acr-MeClO4 as a photocatalyst without using any additive or cocatalyst is reported here. O2 served as the eco-friendly and green oxidant source for this conversion. In addition, the protocol exhibited high regioselectivity and tolerance toward a broad spectrum of functional groups to furnish quinoxaline-2,3-diones in good to excellent yields.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
12
|
Yang X, Xia Y, Tong J, Ouyang L, Lai Y, Luo R, Liao J. Photoinduced radical cascade cyclization of acetylenic acid esters with oxime esters to access cyanalkylated coumarins. Org Biomol Chem 2022; 20:5239-5244. [PMID: 35723258 DOI: 10.1039/d2ob00612j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoinduced radical cascade cyclization of acetylenic acid esters with oxime esters is described, providing cyanalkylated coumarins in superior yields under mild conditions. Radical capture and luminescence quenching experiments showed that this transformation was accomplished via a radical addition/5-exo spirocyclization/1,2-ester migration process.
Collapse
Affiliation(s)
- Xiao Yang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Yanping Xia
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Jinghui Tong
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Yinlong Lai
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Renshi Luo
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China. .,College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Jianhua Liao
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China. .,College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
13
|
Mathuri A, Pramanik M, Mal P. 3-Arylsulfonylquinolines from N-Propargylamines via Cascaded Oxidative Sulfonylation Using DABSO. J Org Chem 2022; 87:6812-6823. [PMID: 35509227 DOI: 10.1021/acs.joc.2c00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report a cascaded oxidative sulfonylation of N-propargylamine via a three-component coupling reaction using DABCO·(SO2)2 (DABSO). 3-Arylsulfonylquinolines were obtained by mixing diazonium tetrafluoroborate, N-propargylamine, and DABSO under argon atmosphere in dichloroethane (DCE) for 1 h. In a radical pathway, DABSO was utilized as the sulfone source and an oxidant in this radical-mediated cascaded reaction.
Collapse
Affiliation(s)
- Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
14
|
Xie XY, Xu YF, Li Y, Wang XD, Zhu J, Wu L. Radical modulated regioselective difunctionalization of vinyl enynes: tunable access to naphthalen-1(2 H)-ones and allenic alcohols. Chem Commun (Camb) 2022; 58:3031-3034. [PMID: 35156673 DOI: 10.1039/d1cc06994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient radical-modulated difunctionalization of vinyl enynes has been disclosed using TEMPO as a radical regulator. Facile access to structurally diverse 3-bromo-naphthalen-1(2H)-ones and 4-bromo-allenic alcohols was realized via 1,2-addition/1,2-migration or 1,4-addition, respectively. This protocol represents the first example of radical-modulated metal-free difunctionalization of 1,3-enynes with high regioselectivity.
Collapse
Affiliation(s)
- Xiao-Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun-Fang Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xiao-Dong Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. .,College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, P. R. China
| |
Collapse
|