1
|
Huang R, Gao M, Yang Z, Han W, Wei Z, Li Z, Xu B. 1,3-Difunctionalization of Donor-Acceptor Cyclopropanes Enabled by Copper Nitrate: A Direct Approach to γ-Halonitrates. Org Lett 2024; 26:9659-9664. [PMID: 39481081 DOI: 10.1021/acs.orglett.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
1,3-Difunctionalization of donor-acceptor cyclopropanes with copper nitrate and N-halosuccinimide was developed to efficiently afford γ-halonitrates. The pivotal factor of this protocol lies in the dual role of copper nitrate as a Lewis acid and an ideal nitrooxy source. The given approach features easy handling, good functional group compatibility, and wide substrate scope. Furthermore, various transformations of the obtained γ-chloronitrates underscore the remarkable synthetic potential inherent in this method.
Collapse
Affiliation(s)
- Ruoxin Huang
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Mingchun Gao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhenkun Yang
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Wanghao Han
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ziqiang Wei
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhen Li
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
2
|
Konwar M, Hazarika N, Sarmah BK, Das A. Ruthenium(II)-Catalyzed Oxidative Annulation of Imidazo[1,5-a]quinolin-2-iums Salts and Internal Alkynes via C-H Bond Activation. Chemistry 2024; 30:e202401133. [PMID: 38593238 DOI: 10.1002/chem.202401133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Ruthenium(II)-catalyzed synthesis of π-conjugated fused imidazo[1,5-a]quinolin-2-ium derivatives have been achieved via C-H activation of quinoline-functionalized NHC (NHC=N-heterocyclic carbene) and oxidative coupling with internal alkynes. The reaction occurred with high efficiency, broad substrate scope, tolerates a wide range of functional groups and utilized into a gram-scale. Synthetic applications of the coupled product have been exemplified in the late-stage derivatization of various highly functionalized scaffolds. Moreover, most of the annulated products exhibit intense fluorescence and have potential applications in optoelectronic devices. Mechanistic studies have provided insights into the spectroscopic characterization of key five-membered ruthenacycle intermediate and Ru(0) sandwich species. Based on several control experiments, deuterium-kinetic isotope effect, and thermodynamic activation parameters the mechanistic finding demonstrated that fused imidazo-[1,5-a]quinolin-2-ium C(2)-H bond cleavage is the rate-determining step and ruling out the possibility of reductive elimination for controlling the rate of reaction.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Department of Chemistry, Sonari College, Charaideo, 785690, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
3
|
Konwar M, Hazarika N, Das A. Ru/O 2-Catalyzed Oxidative C-H Activation/Alkyne Annulation Using Quinoline-Functionalized NHC as a Directing and Functionalizable Group. Org Lett 2024; 26:2965-2970. [PMID: 38593400 DOI: 10.1021/acs.orglett.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The ruthenium/O2-catalyzed oxidative annulation reaction of imidazo[1,5-a]quinolin-2-ium salts with alkynes via N-heterocyclic carbene-directed C-H activation to obtain π-conjugated fused imidazo[1,5-a]quinolin-2-ium derivatives is reported. Molecular oxygen has been explored as an economic and clean oxidant and an alternative to metal oxidants. The current protocol exhibits a wide range of substrate scope including bioactive (±)-α-tocopherol derivatives. Moreover, most of the annulated products show strong fluorescence properties, indicating their potential for making new light-emitting materials.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam India
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam India
| |
Collapse
|
4
|
Ma HJ, Gao K, Wang XL, Zeng JY, Yang Y, Jiang Y. AlCl 3-mediated ring-opening reactions of indoline-2-thiones with acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes. Org Biomol Chem 2023; 21:6312-6316. [PMID: 37493459 DOI: 10.1039/d3ob00909b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
AlCl3-mediated nucleophilic ring-opening reactions of indoline-2-thiones with various acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes were investigated. A series of ketones functionalized with indolylthio groups were synthesized in yields ranging from moderate to good. Moreover, chemical transformations of 4-indolylthio butan-1-ones to dihydro-2H-thiepino[2,3-b]indoles and sulfone were carried out to further expand both synthetic utility and structural complexity.
Collapse
Affiliation(s)
- Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Ke Gao
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xue-Long Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Jun-Yi Zeng
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
5
|
Singha K, Habib I, Hossain M. Quinoline N‐Oxide: A Versatile Precursor in Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202203537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Koustav Singha
- Synthetic Organic Research Laboratory UGC-Human Resource Development Centre (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| | - Imran Habib
- Synthetic Organic Research Laboratory UGC-Human Resource Development Centre (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| | - Mossaraf Hossain
- Synthetic Organic Research Laboratory UGC-Human Resource Development Centre (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| |
Collapse
|
6
|
Li W, Yang Y, Tang Z, Yu X, Lin J, Jin Y. Visible-Light-Promoted Carbene Insertion and Decarbonylation for the Synthesis of α-Substituted γ-Ketoesters. J Org Chem 2022; 87:13352-13362. [PMID: 36130043 DOI: 10.1021/acs.joc.2c01552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a blue visible-light-promoted approach for preparing a variety of α-substituted γ-ketoester derivatives through carbene insertion and the decarbonylation of enaminones and diazoesters. These reactions use readily available starting materials and transition-metal-free, eco-friendly procedures that are amenable to gram-scale synthesis and wide functional group tolerance. This methodology may be useful for constructing polysubstituted heterocycles with potential biological activity.
Collapse
Affiliation(s)
- Weina Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yingying Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Zhiliang Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xianglin Yu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
7
|
Andreev I, Boichenko M, Ratmanova N, Ivanova O, Levina I, Khrustalev V, Sedov I, Trushkov I. 4‐(Dimethylamino)pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivan Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | - Maksim Boichenko
- Lomonosov Moscow State University Department of Chemistry RUSSIAN FEDERATION
| | - Nina Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | | | - Irina Levina
- FSBSI Institute of Biochemical Physics named after N M Emanuel of the Russian Academy of Sciences RUSSIAN FEDERATION
| | | | - Igor Sedov
- Kazan Federal University RUSSIAN FEDERATION
| | - Igor Trushkov
- N.D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| |
Collapse
|
8
|
More SG, Suryavanshi G. Lewis acid triggered N-alkylation of sulfoximines through nucleophilic ring-opening of donor-acceptor cyclopropanes: synthesis of γ-sulfoximino malonic diesters. Org Biomol Chem 2022; 20:2518-2529. [PMID: 35266938 DOI: 10.1039/d2ob00213b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scandium triflate (Sc(OTf)3) catalyzed, mild, and regioselective ring-opening reaction of donor-acceptor (D-A) cyclopropanes has been developed using sulfoximines for the synthesis of γ-sulfoximino malonic diesters. This protocol allows the synthesis of different N-alkyl sulfoximines in good to excellent yields (up to 94%) with broad functional group tolerance. In this process, N-H and C-C bonds are cleaved to form new C-N and C-H bonds. The feasibility of this method is supported by a gram-scale reaction and synthetic elaboration of the obtained product.
Collapse
Affiliation(s)
- Satish G More
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411 008, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Gurunath Suryavanshi
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411 008, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|