1
|
Wu C, Xu Y, Li S, Meng Y, Fang H, Yan C. Formation of Radical-like NH Ligand from NH 3 at Ambient Conditions Mediated by Dialkyl Rare-Earth Complexes. J Am Chem Soc 2024; 146:30824-30835. [PMID: 39485863 DOI: 10.1021/jacs.4c08752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Although intensive work on ammonia activation has been carried out in recent decades, generating nitrogen-centered radicals from NH3 under ambient conditions remains quite challenging. In the presented research, the conversion of NH3 to radical-like NH ligand has been achieved by the reactions of a series of dialkyl rare-earth (RE) complexes (1-RE, RE = Tb, Dy, Y, Ho, Er, Yb, and Lu) supported by β-diketiminate ligands with NH3 in n-hexane at room temperature, resulting in the formations of the radical-like μ3-NH ligands containing trinuclear RE complexes (2-RE). The radical-like feature of the μ3-NH ligand was revealed by electron paramagnetic resonance and magnetic measurements, radical trapping experiments, and computational spin density analysis. In addition, H2 was detected to form during the reaction of 1-RE with NH3, indicating that the radical-like μ3-NH ligand was likely to be generated via N-H bond homolysis. Moreover, the solvents and coordination pattern of β-diketiminate ligands are crucial for the formation of the radical-like μ3-NH ligand from NH3. When toluene instead of n-hexane was used in the reaction of 1-RE with NH3, an array of octaamido tetranuclear RE complexes (3-RE) was obtained. The reaction of the dialkyl yttrium complex (4-Y) bearing a modified β-diketiminate ligand, in which the two mesityl substituents are replaced by a 2,6-diisopropylphenyl group and a 2-(dimethylamino)ethyl group, with NH3 in both n-hexane and toluene only yielded a tetranuclear yttrium complex carrying the dianionic closed-shell μ3-NH ligands (5-Y).
Collapse
Affiliation(s)
- Changjiang Wu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
- College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yingzhuang Xu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Songyi Li
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yinshan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Chunhua Yan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Das D, Jena S, Ghorai P. Umpolung Reactivity of in Situ Derived Aryl Hydrazones: An Asymmetric Brønsted Acid Catalyzed Strategy to Access Fused Pyrazolidines. Org Lett 2024; 26:6853-6858. [PMID: 39088554 DOI: 10.1021/acs.orglett.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Herein, we report an intriguing cascade strategy for synthesizing optically active fused pyrazolidines featuring three contiguous stereogenic centers. The formyl-tethered enones are templates for the developed umpolung reactivity, showcasing diverse substrate adaptability with various arylhydrazines. The chiral phosphoric acid catalyst offers stereochemical guidance, forming the fused pyrazolidines with commendable to excellent stereoselectivities. Additionally, the scalability, postsynthetic transformations, and instability of unacylated pyrazolidines have been successfully demonstrated.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Smrutismarak Jena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
3
|
Das D, Kamilya C, Ghorai P. Hydrazine Hydrate in Asymmetric Synthesis: A Bifunctional Squaramide Catalytic Approach toward Fused Pyrazolines. Org Lett 2023; 25:6993-6998. [PMID: 37728280 DOI: 10.1021/acs.orglett.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A unified strategy has been developed to utilize hydrazine hydrate in asymmetric organic synthesis by overcoming the rapid background reaction with dienone. The H-bond donor ability of the cinchona-alkaloid-derived squaramide catalyst unlocks this previously deemed infeasibility. The dissymmetric hydrazine addition to symmetrical dienones tolerates various substitutions, resulting in the formation of optically pure fused pyrazoline derivatives under mild reaction conditions. Furthermore, the scalability of this methodology and a successful demonstration of postsynthetic transformations have been accomplished.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Chandan Kamilya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
4
|
Pedrón M, Sendra J, Ginés I, Tejero T, Vicario JL, Merino P. Computational studies of Brønsted acid-catalyzed transannular cycloadditions of cycloalkenone hydrazones. Beilstein J Org Chem 2023; 19:477-486. [PMID: 37123091 PMCID: PMC10130903 DOI: 10.3762/bjoc.19.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
The contribution to the energy barrier of a series of tethers in transannular cycloadditions of cycloalkenes with hydrazones has been computationally studied by using DFT. The Houk's distortion model has been employed to evaluate the influence of the tether in the cycloaddition reaction. That model has been extended to determine the contribution of each tether and, more importantly, the effect exerted between them. In addition to the distortion induced by the tethers, the entropy effects caused by them has also been studied. The analysis of the evolution of the electron localization function along the reaction revealed the highly concerted character of the reaction.
Collapse
Affiliation(s)
- Manuel Pedrón
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jana Sendra
- Departamento de Química Orgánica e Inorgánica, Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao, Spain
| | - Irene Ginés
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (SQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Jose L Vicario
- Departamento de Química Orgánica e Inorgánica, Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Kang Q, Mu Y, Yuan Y, Wang Y, Jin S, Wang C, Li Y. Diastereoselective Synthesis of Bicyclo[3.3.0]octenones by Copper-Catalyzed Transannular Ring-Closing Reaction. Org Lett 2022; 24:5924-5928. [PMID: 35930708 DOI: 10.1021/acs.orglett.2c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and efficient copper-catalyzed transannular ring-closing reaction of eight-membered rings has been developed that provides a straightforward way to synthesize bicyclo[3.3.0]octane derivatives in good yields. Mechanistic studies revealed that the reaction pathway might involve chlorination followed by the Kornblum reaction. Readily accessible starting materials and good functional group tolerance make this procedure attractive.
Collapse
Affiliation(s)
- Qiongwen Kang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuanyang Mu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yang Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shuxin Jin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
6
|
Aher RD, Ishikawa A, Yamanaka M, Tanaka F. Catalytic Enantioselective Construction of Decalin Derivatives by Dynamic Kinetic Desymmetrization of C2-Symmetric Derivatives through Aldol-Aldol Annulation. J Org Chem 2022; 87:8151-8157. [PMID: 35666096 DOI: 10.1021/acs.joc.2c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed and investigated a catalytic desymmetrization reaction strategy that affords functionalized decalin derivatives with high enantioselectivities from C2-symmetric derivatives through aldol-aldol annulation. We identified the structural moieties of the catalyst necessary for the formation of the decalin derivative with high enantioselectivity. We elucidated the mechanisms of the catalyzed reactions: the first aldol reaction step was reversible, and the second aldol step was rate-limiting and stereochemistry-determining and was enantioselective. Using theoretical calculations guided by the experimental results, we identified the interactions between the catalyst and the transition state that led to the major enantiomer. The information obtained in this study will be useful for the development of catalysts and chemical transformations.
Collapse
Affiliation(s)
- Ravindra D Aher
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Atsuhiro Ishikawa
- Department of Chemistry, Rikkyo University, 3-34-1 Nish-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Rikkyo University, 3-34-1 Nish-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Prieto L, Rodríguez V, Vicario JL, Reyes E, Hornillos V. Enantioselective transannular reactions by palladium-catalysed conjugate addition of aryl boronic acids. Chem Commun (Camb) 2022; 58:6514-6517. [PMID: 35575448 DOI: 10.1039/d2cc01642g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed asymmeric conjugate addition of aryl boronic acids to medium-sized cycloalkenones followed by intramolecular aldol trapping is reported. The use of in situ formed [Pd/(QuinoxP*)] as the catalyst enables the synthesis of arylbicyclic scaffolds in good yields and with excellent stereocontrol (up to 7 : 1 dr, up to 99% ee). The reaction is applicable to a range of medium size ketoenone substrates and funcionalized aryl boronic acids, including heterocyclic compounds.
Collapse
Affiliation(s)
- Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain.
| | - Verónica Rodríguez
- Departamento de Química Orgánica, Universidad de Sevilla, C/Prof. García González, 1, 41012 Sevilla, Spain.
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain.
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain.
| | - Valentín Hornillos
- Departamento de Química Orgánica, Universidad de Sevilla, C/Prof. García González, 1, 41012 Sevilla, Spain. .,Instituto Investigaciones Químicas (CSIC-US), C/Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
8
|
Reyes E, Prieto L, Carrillo L, Uria U, Vicario J. Recent Developments in Transannular Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1843-1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transannular reactions have shown a remarkable performance for the construction of polycyclic scaffolds from medium- or large sized cyclic molecules in an unconventional manner. Recent examples of transannular reactions reported from 2011 have been reviewed, emphasizing the excellent performance of this approach when accessing the target compounds. This review also highlights how this methodology provides an alternative approach to other commonly used methodologies for the construction of cyclic entities such as cyclization or cycloaddition reactions
Collapse
|