1
|
Otsuki S, Kanemoto K, Martos DC, Kwon E, Wencel-Delord J, Yoshikai N. Diazomethyl-λ 3-iodane meets aryne: dipolar cycloaddition and C-to-N iodane shift leading to indazolyl-λ 3-iodanes. Chem Sci 2025; 16:8053-8059. [PMID: 40206543 PMCID: PMC11976445 DOI: 10.1039/d5sc00266d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Diazomethyl-λ3-iodanes have recently emerged as carbyne equivalents in organic synthesis, enabling the construction of multi-substituted carbon centers through strategic sequential activation of the diazo and iodane functional groups. Distinct from such reaction modes, we report here on the reactivity of diazomethyl-λ3-iodanes as iodane-bound 1,3-dipoles toward arynes. Equipped with bis(trifluoromethyl)benzyl alcohol-based benziodoxole (BX) moiety, diazomethyl-λ3-iodanes undergo annulation with arynes generated from ortho-silylaryl triflates and cyclic diarylhalonium salts, resulting in indazolyl-λ3-iodanes through [3 + 2] cycloaddition and carbon-to-nitrogen iodane migration. DFT calculations reveal that diazomethyl-BX prefers [3 + 2] cycloaddition with aryne over aryne insertion into the carbon-iodine(iii) bond (carboiodanation) and that the subsequent iodane migration proceeds through two consecutive 1,5-iodane shifts. The utility of these indazolyl-BXs as indazole-transfer agents has been demonstrated by α-functionalization of N,N-dimethylaniline derivatives.
Collapse
Affiliation(s)
- Shinya Otsuki
- Graduate School of Pharmaceutical Sciences, Tohoku University Sendai 980-8578 Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University Sendai 980-8578 Japan
| | - Daniel Carter Martos
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University Sendai 980-8578 Japan
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University Sendai 980-8578 Japan
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
- Institute of Organic Chemistry, JMU Würzburg Am Hubland Würzburg Germany
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University Sendai 980-8578 Japan
| |
Collapse
|
2
|
Krammer L, Darnhofer B, Kljajic M, Liesinger L, Schittmayer M, Neshchadin D, Gescheidt G, Kollau A, Mayer B, Fischer RC, Wallner S, Macheroux P, Birner-Gruenberger R, Breinbauer R. A general approach for activity-based protein profiling of oxidoreductases with redox-differentiated diarylhalonium warheads. Chem Sci 2025; 16:6240-6256. [PMID: 40103729 PMCID: PMC11912224 DOI: 10.1039/d4sc08454c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Activity-based protein profiling (ABPP) is a unique proteomic tool for measuring the activity of enzymes in their cellular context, which has been well established for enzyme classes exhibiting a characteristic nucleophilic residue (e.g., hydrolases). In contrast, the enzyme class of oxidoreductases has received less attention, as its members rely mainly on cofactors instead of nucleophilic amino acid residues for catalysis. ABPP probes have been designed for specific oxidoreductase subclasses, which rely on the oxidative conversion of the probes into strong electrophiles. Here we describe the development of ABPP probes for the simultaneous labeling of various subclasses of oxidoreductases. The probe warheads are based on hypervalent diarylhalonium salts, which show unique reactivity as their activation proceeds via a reductive mechanism resulting in aryl radicals leading to covalent labeling of liver proteins at several different amino acids in close proximity to the active sites. The redox potential of the probes can be tuned by isosteric replacement varying the halonium central atom. ABPP experiments with liver using 16 probes differing in warhead, linker, and structure revealed distinct overlapping profiles and broad substrate specificities of several probes. With their capability of multi oxidoreductase subclass labeling - including rare examples for the class of reductases - and their unique design, the herein reported probes offer new opportunities for the investigation of the "oxidoreductome" of microorganisms, plants, animal and human tissues.
Collapse
Affiliation(s)
- Leo Krammer
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
| | - Marko Kljajic
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Laura Liesinger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien Getreidemarkt 9 1060 Vienna Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien Getreidemarkt 9 1060 Vienna Austria
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Alexander Kollau
- Institute of Pharmaceutical Sciences, University of Graz Humboldtstraße 46 8010 Graz Austria
| | - Bernd Mayer
- Institute of Pharmaceutical Sciences, University of Graz Humboldtstraße 46 8010 Graz Austria
| | - Roland C Fischer
- Institute of Inorganic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology Petersgasse 12 8010 Graz Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology Petersgasse 12 8010 Graz Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
- Institute of Chemical Technologies and Analytics, Technische Universität Wien Getreidemarkt 9 1060 Vienna Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
3
|
Savkins A, Sokolovs I. Electrochemical synthesis of cyclic biaryl λ 3-bromanes from 2,2'-dibromobiphenyls. Beilstein J Org Chem 2025; 21:451-457. [PMID: 40041198 PMCID: PMC11878128 DOI: 10.3762/bjoc.21.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
The remarkable nucleofugality of bromoarenes in diarylbromonium species renders them particularly suitable for the generation of arynes for subsequent use in a wide range of synthetic applications. The common approach to generate cyclic biaryl λ3-bromanes is based on thermal decomposition of hazardous diazonium salts. Herein, we disclose a mild and straightforward approach to diarylbromonium species by direct anodic oxidation of 2,2'-dibromo-1,1'-biphenyl. The electrochemical method provides access to a range of symmetrically and non-symmetrically substituted cyclic biaryl λ3-bromanes in moderate yields.
Collapse
Affiliation(s)
- Andrejs Savkins
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
- Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas 1, 1004 Riga, Latvia
| | - Igors Sokolovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| |
Collapse
|
4
|
Fujino T, Hyodo T, Otani Y, Yamaguchi K, Ohwada T. Synthesis of Stable Hypervalent Bromine(III) Complexes by in Situ Oxidation with Lewis Acids Containing sp-Hybridized Nitrogen. Org Lett 2024. [PMID: 39526937 DOI: 10.1021/acs.orglett.4c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Stable hypervalent bromine(III) compounds were synthesized via aryl bromine oxidation with sp-hybridized nitrogen cations generated by oxime N-O bond cleavage in trifluoroacetic acid. The resulting intramolecular N-Br hypervalent bond is effectively stabilized by the planar xanthone structure. The structures and physicochemical properties of these λ3-bromanes were characterized by X-ray crystallography, cyclic voltammetry, UV-vis spectroscopy, and computational analysis.
Collapse
Affiliation(s)
- Tomohiro Fujino
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Yuko Otani
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Patra K, Dey MP, Baidya M. Metal-free site-selective functionalization with cyclic diaryl λ 3-chloranes: suppression of benzyne formation for ligand-coupling reactions. Chem Sci 2024:d4sc04108a. [PMID: 39309097 PMCID: PMC11414830 DOI: 10.1039/d4sc04108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
While hypervalent halogens are versatile reagents enabling diverse reactions in organic synthesis, the utility of hypervalent chlorine compounds, particularly cyclic λ3-chloranes, remains underdeveloped despite their unique electronic properties and innate enhanced reactivity. Herein, we illustrate the elusive ligand coupling reaction of cyclic λ3-chloranes that suppresses the more facile competing reaction modality involving benzyne intermediates. The methodology can be performed in three-component as well as two-component fashions, offering direct access to a wide range of unsymmetrically substituted biaryl molecules in very high yields and excellent ortho-regioselectivity. The reactions were scalable, and the versatility was demonstrated by constructing different types of C-S and C-N bonds under mild conditions. The reaction outcomes were also compared with those of corresponding λ3-iodanes and λ3-bromanes, demonstrating the superiority of cyclic λ3-chloranes in ligand-coupling reactions under metal-free conditions.
Collapse
Affiliation(s)
- Koushik Patra
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | - Manas Pratim Dey
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| |
Collapse
|
6
|
Shao Y, Ren Z, Han Z, Chen L, Li Y, Xue XS. Predicting bond dissociation energies of cyclic hypervalent halogen reagents using DFT calculations and graph attention network model. Beilstein J Org Chem 2024; 20:1444-1452. [PMID: 38952960 PMCID: PMC11216094 DOI: 10.3762/bjoc.20.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Although hypervalent iodine(III) reagents have become staples in organic chemistry, the exploration of their isoelectronic counterparts, namely hypervalent bromine(III) and chlorine(III) reagents, has been relatively limited, partly due to challenges in synthesizing and stabilizing these compounds. In this study, we conduct a thorough examination of both homolytic and heterolytic bond dissociation energies (BDEs) critical for assessing the chemical stability and functional group transfer capability of cyclic hypervalent halogen compounds using density functional theory (DFT) analysis. A moderate linear correlation was observed between the homolytic BDEs across different halogen centers, while a strong linear correlation was noted among the heterolytic BDEs across these centers. Furthermore, we developed a predictive model for both homolytic and heterolytic BDEs of cyclic hypervalent halogen compounds using machine learning algorithms. The results of this study could aid in estimating the chemical stability and functional group transfer capabilities of hypervalent bromine(III) and chlorine(III) reagents, thereby facilitating their development.
Collapse
Affiliation(s)
- Yingbo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhiyuan Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhihui Han
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
7
|
Carter Martos D, de Abreu M, Hauk P, Fackler P, Wencel-Delord J. Easy access to polyhalogenated biaryls: regioselective (di)halogenation of hypervalent bromines and chlorines. Chem Sci 2024; 15:6770-6776. [PMID: 38725515 PMCID: PMC11077539 DOI: 10.1039/d4sc01234h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Polyhalogenated biaryls are unique motifs offering untapped potential as versatile building blocks for the expedient synthesis of complex biaryl compounds. Overcoming the limitations of conventional syntheses, we introduce a novel, metal-free, operationally simple and one-pot approach to regioselectively (di)halogenate biaryl compounds under mild conditions using cyclic biaryl hypervalent bromine and chlorine substrates as masked arynes. Through chemoselective post-functionalizations, these valuable products can expand the toolbox for synthesizing biaryl-containing scaffolds, addressing a critical gap in the field.
Collapse
Affiliation(s)
- Daniel Carter Martos
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| | - Maxime de Abreu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| | - Pascal Hauk
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| | | | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 67087 Strasbourg France
| |
Collapse
|
8
|
De Abreu M, Rogge T, Lanzi M, Saiegh TJ, Houk KN, Wencel-Delord J. Cyclic Diaryl λ 3-Bromanes as a Precursor for Regiodivergent Alkynylation Reactions. Angew Chem Int Ed Engl 2024; 63:e202319960. [PMID: 38375976 DOI: 10.1002/anie.202319960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Regiodivergent reactions are a fascinating tool to rapidly access molecular diversity while using identical coupling partners. We have developed a new approach for regiodivergent synthesis using the dual character of hypervalent bromines. In addition to the recently reported reactivity of hypervalent bromines as aryne precursors, the first transition metal-catalyzed reaction is reported. Accordingly, the development of these two complementary transformations allows for the alteration of regioselectivity to furnish both ortho- and meta-substituted alkynylation products. Mechanistic and computational studies show how these selectivities are controlled.
Collapse
Affiliation(s)
- Maxime De Abreu
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Matteo Lanzi
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Tomas J Saiegh
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
- Institute of Organic Chemistry, JMU Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
9
|
Lanzi M, Wencel-Delord J. Diaryl hypervalent bromines and chlorines: synthesis, structures and reactivities. Chem Sci 2024; 15:1557-1569. [PMID: 38303936 PMCID: PMC10829020 DOI: 10.1039/d3sc05382b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024] Open
Abstract
In the field of modern organic chemistry, hypervalent compounds have become indispensable tools for synthetic chemists, finding widespread applications in both academic research and industrial settings. While iodine-based reagents have historically dominated this research field, recent focus has shifted to the potent yet relatively unexplored chemistry of diaryl λ3-bromanes and -chloranes. Despite their unique reactivities, the progress in their development and application within organic synthesis has been hampered by the absence of straightforward, reliable, and widely applicable preparative methods. However, recent investigations have uncovered innovative approaches and novel reactivity patterns associated with these specialized compounds. These discoveries suggest that we have only begun to tap into their potential, implying that there is much more to be explored in this captivating area of chemistry.
Collapse
Affiliation(s)
- Matteo Lanzi
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
- Institute of Organic Chemistry, JMU Würzburg Am Hubland Würzburg Germany
| |
Collapse
|
10
|
Huss C, Yoshimura A, Rohde GT, Mironova IA, Postnikov PS, Yusubov MS, Saito A, Zhdankin VV. Preparation and X-ray Structural Study of Dibenzobromolium and Dibenzochlorolium Derivatives. ACS OMEGA 2024; 9:2664-2673. [PMID: 38250385 PMCID: PMC10795028 DOI: 10.1021/acsomega.3c07512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Various five-membered cyclic dibenzobromolium salts (dibenzo[b,d]bromol-5-ium chloride, nitrate, hydrogen sulfate, dihydrogen phosphate, trifluoroacetate, and tetrafluoroborate) were prepared by diazotization-cyclization of 2'-bromo-[1,1'-biphenyl]-2-amine in solution of appropriate acids. The chlorolium analogues (iodide, trifluoroacetate, and tetrafluoroborate) were obtained by a similar procedure. Additional dibenzohalolium derivatives (dibenzo[b,d]bromol-5-ium and dibenzo[b,d]chlorol-5-ium azides, bis(trifluoromethanesulfonyl)imidates, thiocyanates, and trifluoromethanesulfonates) were prepared by anion exchange. Structures of ten of these dibenzohalolium derivatives were established by X-ray analysis. Bond distances and angles for the halogen atoms in different dibenzohalolium derivatives were summarized and discussed.
Collapse
Affiliation(s)
- Christopher
D. Huss
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Akira Yoshimura
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | | | - Irina A. Mironova
- Research
School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Pavel S. Postnikov
- Research
School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, Tomsk 634050, Russia
- Department
of Solid-State Engineering, University of
Chemistry and Technology, Prague 16628, Czech Republic
| | - Mekhman S. Yusubov
- Research
School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Akio Saito
- Division
of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-23-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
11
|
Metze BE, Roberts RA, Nilova A, Stuart DR. An efficient and chemoselective method to generate arynes. Chem Sci 2023; 14:13885-13892. [PMID: 38075642 PMCID: PMC10699571 DOI: 10.1039/d3sc05429b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 04/06/2025] Open
Abstract
Arynes hold immense potential as reactive intermediates in organic synthesis as they engage in a diverse range of mechanistically distinct chemical reactions. However, the poor functional group compatibility of generating arynes or their precursors has stymied their widespread use. Here, we show that generating arynes by deprotonation of an arene and elimination of an "onium" leaving group is mild, efficient and broad in scope. This is achieved by using aryl(TMP)iodonium salts (TMP = 2,4,6-trimethoxyphenyl) as the aryne precursor and potassium phosphate as the base, and a range of arynophiles are compatible. Additionally, we have performed the first quantitative analysis of functional group compatibility for several methods to generate arynes, including the method developed here and the current state of the art. Finally, we show that a range of "sensitive" functional groups such as Lewis and Brønsted acids and electrophiles are compatible under our conditions.
Collapse
Affiliation(s)
- Bryan E Metze
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Riley A Roberts
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Aleksandra Nilova
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - David R Stuart
- Department of Chemistry, Portland State University Portland OR 97201 USA
| |
Collapse
|
12
|
Taguchi J, Okuyama T, Tomita S, Niwa T, Hosoya T. Synthesis of Multisubstituted Aromatics via 3-Triazenylarynes. Org Lett 2023; 25:7030-7034. [PMID: 37712445 DOI: 10.1021/acs.orglett.3c02615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
An efficient method for generating 3-triazenylarynes from ortho-iodoaryl triflate-type precursors was developed. The generated arynes reacted with various arynophiles with high regioselectivity because of the triazenyl group. The 3-triazenylaryne precursors functioned as useful intermediates of diverse multisubstituted aromatic compounds through the transformation of the remaining triazenyl group of aryne adducts and triazenyl group-directed ortho-C-H functionalization.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takumi Okuyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Satomi Tomita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takashi Niwa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
13
|
Chen WW, Artigues M, Font-Bardia M, Cuenca AB, Shafir A. Cyclic Homo- and Heterohalogen Di-λ 3-diarylhalonium Structures. J Am Chem Soc 2023. [PMID: 37311085 DOI: 10.1021/jacs.3c02406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the context of the ever-growing interest in the cyclic diaryliodonium salts, this work presents synthetic design principles for a new family of structures with two hypervalent halogens in the ring. The smallest bis-phenylene derivative, [(C6H4)2I2]2+, was prepared through oxidative dimerization of a precursor bearing the ortho-disposed iodine and trifluoroborate groups. We also report, for the first time, the formation of cycles containing two different halogen atoms. These present two phenylenes linked by hetero-(I/Br) or -(I/Cl) halogen pairs. This approach was also extended to the cyclic bis-naphthylene derivative [(C10H6)2I2]2+. The structures of these bis-halogen(III) rings were further assessed through X-ray analysis. The simplest cyclic phenylene bis-iodine(III) derivative features the interplanar angle of ∼120°, while a smaller angle of ∼103° was found for the analogous naphthylene-based salt. All dications form dimeric pairs through a combination of π-π and C-H/π interactions. As the largest member of the family, a bis-I(III)-macrocycle was also assembled using the quasi-planar xanthene backbone. Its geometry enables the two iodine(III) centers to be bridged intramolecularly by two bidentate triflate anions. In a preliminary manner, the interaction of the phenylene- and naphthalene-based bis-iodine(III) dications with a new family of rigid bidentate bis-pyridine ligands was studied in solution and the solid state, with an X-ray structure showing the chelating donor bonding to just one of the two iodine centers.
Collapse
Affiliation(s)
- Wei W Chen
- BISi-Bonds Group, Institut de Química Avançada de Catalunya, IQAC-CSIC, c/Jordi Girona 20, 08034 Barcelona, Spain
| | - Margalida Artigues
- Department of Analytical and Applied Chemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, 08017 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de RX. Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, c/Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Ana B Cuenca
- BISi-Bonds/CRISOL Group, Department of Organic and Pharmaceutical Chemistry, Universitat Ramon Llull and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Vía Augusta 390, 08017 Barcelona, Spain
| | - Alexandr Shafir
- BISi-Bonds Group, Institut de Química Avançada de Catalunya, IQAC-CSIC, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 08034 Barcelona, Spain
| |
Collapse
|
14
|
Yuan H, Yin W, Hu J, Li Y. 3-sulfonyloxyaryl(mesityl)iodonium triflates as 1,2-benzdiyne precursors with activation via ortho-deprotonative elimination strategy. Nat Commun 2023; 14:1841. [PMID: 37012251 PMCID: PMC10070408 DOI: 10.1038/s41467-023-37196-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
Benzyne has long captivated the attention of chemists and has gained numerous synthetic achievements. Among typical benzyne generation methods, removal of two vicinal substituents from 1,2-difunctionalized benzenes, i.e., Kobayashi's protocol, are prevailing, while ortho-deprotonative elimination from mono-substituted benzene lags far behind. Despite the advantages of atom economy and ready achievability of precursors, a bottle neck for ortho-deprotonative elimination strategy resides in the weak acidity of the ortho-hydrogen, which normally demands strong bases as the activating reagents. Here, an efficient aryne generation protocol is developed, where ortho-deprotonative elimination on 3-sulfonyloxyaryl(mesityl)iodonium triflates occurs under mild conditions and the generated 3-sulfonyloxyarynes can serve as efficient 1,2-benzdiyne synthons. This array of 1,2-benzdiyne precursors can be conveniently prepared with high functional group tolerance, and densely substituted scaffolds can be accessed as well. Carbonate and fluoride salts are found to serve as efficient activating reagents, which are the weakest bases used in ortho-deprotonative elimination strategies. Particularly, this scaffold has predictable chemoselective generation of the designated aryne intermediates. The success of this ortho-deprotonative elimination protocol sets up a unique platform with a broad spectrum of synthetic applications.
Collapse
Affiliation(s)
- Haoyin Yuan
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400030, China
| | - Wenhao Yin
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400030, China
| | - Jili Hu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400030, China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400030, China.
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
Sokolovs I, Suna E. Electrochemical Synthesis of Dimeric λ 3-Bromane: Platform for Hypervalent Bromine(III) Compounds. Org Lett 2023; 25:2047-2052. [PMID: 36944352 PMCID: PMC10071479 DOI: 10.1021/acs.orglett.3c00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
A straightforward and scalable approach to a previously unreported class of cyclic hypervalent Br(III) species capitalizes on the anodic oxidation of aryl bromide to dimeric benzbromoxole that serves as a versatile platform to access a range of structurally diverse Br(III) congeners such as acetoxy-, alkoxy-, and ethynyl-λ3-bromanes as well as diaryl-λ3-bromanes. The synthetic utility of dimeric λ3-bromane is exemplified by photoinduced Minisci-type heteroarylation reactions and benzylic oxidation.
Collapse
Affiliation(s)
- Igors Sokolovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Department of Chemistry, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia
| |
Collapse
|
16
|
Lanzi M, Rogge T, Truong TS, Houk KN, Wencel-Delord J. Cyclic Diaryl λ 3-Chloranes: Reagents and Their C-C and C-O Couplings with Phenols via Aryne Intermediates. J Am Chem Soc 2022; 145:345-358. [PMID: 36535642 PMCID: PMC9837845 DOI: 10.1021/jacs.2c10090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypervalent chloranes are a class of rare and poorly explored reagents. Their unique electronic properties confer reactivity that is complementary to that of the common iodanes and emerging bromanes. Highly chemo- and regioselective, metal-free, and mild C-C and C-O couplings are reported here. Experimental and computational mechanistic studies elucidate the unprecedented reactivities and selectivities of these systems and the intermediacy of aryne intermediates. The synthetic potential of these transformations is further demonstrated via the post-functionalization of C-C and C-O coupling products obtained from reactions of chloranes with phenols under different conditions.
Collapse
Affiliation(s)
- Matteo Lanzi
- Laboratoire
d’Innovation Moléculaire et Applications (UMR CNRS 7042),
Université de Strasbourg/Université de Haute Alsace,
ECPM, 67087Strasbourg, France
| | - Torben Rogge
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Tan Sang Truong
- Laboratoire
d’Innovation Moléculaire et Applications (UMR CNRS 7042),
Université de Strasbourg/Université de Haute Alsace,
ECPM, 67087Strasbourg, France
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States,
| | - Joanna Wencel-Delord
- Laboratoire
d’Innovation Moléculaire et Applications (UMR CNRS 7042),
Université de Strasbourg/Université de Haute Alsace,
ECPM, 67087Strasbourg, France,
| |
Collapse
|
17
|
Dong J, Ostertag A, Sparr C. o-Quinodimethane Atropisomers: Enantioselective Synthesis and Stereospecific Transformation. Angew Chem Int Ed Engl 2022; 61:e202212627. [PMID: 36256547 PMCID: PMC10100317 DOI: 10.1002/anie.202212627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/07/2022]
Abstract
o-Quinodimethanes have remarkable utility as reactive intermediates in Diels-Alder reactions, enabling significantly accelerated routes to complex polycyclic compounds. The discovery of different discrete precursors to thermally generate o-quinodimethanes thereby greatly augmented their availability and versatility. However, due to the required high temperatures and the immense reactivity of o-quinodimethanes, stereoselectivity to afford isomerically defined products still constitutes a critical challenge. Herein, we describe the accessibility of atropisomeric o-quinodimethanes, the enantioselective synthesis of their precursors, their remarkable configurational stability and the stereospecific transformation by the benzannulation of dienophiles. A catalyst-stereocontrolled [2+2+2] cycloaddition, the generation of o-quinodimethane atropisomers and ensuing stereospecific Diels-Alder reactions enabled enantioselectivities through these transient intermediates with of up to 96 : 4 e.r.
Collapse
Affiliation(s)
- Jianyang Dong
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems EngineeringBPR 1095Mattenstrasse 24a4058BaselSwitzerland
| | - Andreas Ostertag
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems EngineeringBPR 1095Mattenstrasse 24a4058BaselSwitzerland
| | - Christof Sparr
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems EngineeringBPR 1095Mattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
18
|
Dauvergne G, Naubron JV, Giorgi M, Bugaut X, Rodriguez J, Carissan Y, Coquerel Y. Enantiospecific Syntheses of Congested Atropisomers through Chiral Bis(aryne) Synthetic Equivalents. Chemistry 2022; 28:e202202473. [PMID: 35943888 PMCID: PMC10087792 DOI: 10.1002/chem.202202473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 12/13/2022]
Abstract
The synthetic equivalents of the enantiopure binaphthyl bis(aryne) atropisomers derived from BINOL (1,1'-bi-2,2'-naphtol) featuring a stereogenic axis vicinal to the two reactive triple bonds can be generated for the first time in solution in an enantiospecific manner. Using a two-step sequence based on the bidirectional [4+2] cycloaddition of furan derivatives followed by an aromatizative deoxygenation reaction, several 9,9'-bianthracenyl-based atropisomers could be prepared enantiospecifically in high enantiomeric purity. Alternatively, bidirectional reactions with anthracene, 2-bromostyrene, and perylene as the arynophiles afforded very congested bis(benzotriptycene), bis(tetraphene) and bis(anthra[1,2,3,4-ghi]perylene) nanocarbon atropisomers in equally high enantiomeric purity. In complement, cross reactions with two different arynophiles revealed possible. The unusual atropisomer prototypes described in this study open the way to enantiopure nanographene atropisomers designed for functions.
Collapse
Affiliation(s)
| | | | - Michel Giorgi
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Marseille, France
| | - Xavier Bugaut
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yannick Carissan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
19
|
Mohebbati N, Sokolovs I, Woite P, Lõkov M, Parman E, Ugandi M, Leito I, Roemelt M, Suna E, Francke R. Electrochemistry and Reactivity of Chelation-stabilized Hypervalent Bromine(III) Compounds. Chemistry 2022; 28:e202200974. [PMID: 35510557 PMCID: PMC9401590 DOI: 10.1002/chem.202200974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/18/2022]
Abstract
Hypervalent bromine(III) reagents possess a higher electrophilicity and a stronger oxidizing power compared to their iodine(III) counterparts. Despite the superior reactivity, bromine(III) reagents have a reputation of hard-to-control and difficult-to-synthesize compounds. This is partly due to their low stability, and partly because their synthesis typically relies on the use of the toxic and highly reactive BrF3 as a precursor. Recently, we proposed chelation-stabilized hypervalent bromine(III) compounds as a possible solution to both problems. First, they can be conveniently prepared by electro-oxidation of the corresponding bromoarenes. Second, the chelation endows bromine(III) species with increased stability while retaining sufficient reactivity, comparable to that of iodine(III) counterparts. Finally, their intrinsic reactivity can be unlocked in the presence of acids. Herein, an in-depth mechanistic study of both the electrochemical generation and the reactivity of the bromine(III) compounds is disclosed, with implications for known applications and future developments in the field.
Collapse
Affiliation(s)
- Nayereh Mohebbati
- Leibniz Institute for CatalysisAlbert-Einstein-Str. 29a18059RostockGermany
- Institute of ChemistryRostock UniversityAlbert-Einstein-Str. 3a18059RostockGermany
| | - Igors Sokolovs
- Latvian Institute of Organic SynthesisAizkraukles 211006RigaLatvia
| | - Philipp Woite
- Department of ChemistryHumboldt-University of BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Märt Lõkov
- Institute of ChemistryUniversity of TartuRavila 14a50411TartuEstonia
| | - Elisabeth Parman
- Institute of ChemistryUniversity of TartuRavila 14a50411TartuEstonia
| | - Mihkel Ugandi
- Department of ChemistryHumboldt-University of BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Ivo Leito
- Institute of ChemistryUniversity of TartuRavila 14a50411TartuEstonia
| | - Michael Roemelt
- Department of ChemistryHumboldt-University of BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Edgars Suna
- Latvian Institute of Organic SynthesisAizkraukles 211006RigaLatvia
- Faculty of ChemistryUniversity of LatviaJelgavas 11004RigaLatvia
| | - Robert Francke
- Leibniz Institute for CatalysisAlbert-Einstein-Str. 29a18059RostockGermany
- Institute of ChemistryRostock UniversityAlbert-Einstein-Str. 3a18059RostockGermany
| |
Collapse
|
20
|
Karandikar SS, Bhattacharjee A, Metze BE, Javaly N, Valente EJ, McCormick TM, Stuart DR. Orbital analysis of bonding in diarylhalonium salts and relevance to periodic trends in structure and reactivity. Chem Sci 2022; 13:6532-6540. [PMID: 35756513 PMCID: PMC9172531 DOI: 10.1039/d2sc02332f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Diarylhalonium compounds provide new opportunities as reagents and catalysts in the field of organic synthesis. The three center, four electron (3c-4e) bond is a center piece of their reactivity, but structural variation among the diarylhaloniums, and in comparison with other λ3-iodanes, indicates that the model needs refinement for broader applicability. We use a combination of Density Functional Theory (DFT), Natural Bond Orbital (NBO) Theory, and X-ray structure data to correlate bonding and structure for a λ3-iodane and a series of diarylchloronium, bromonium, and iodonium salts, and their isoelectronic diarylchalcogen counterparts. This analysis reveals that the s-orbital on the central halogen atom plays a greater role in the 3c-4e bond than previously considered. Finally, we show that our revised bonding model and associated structures account for both kinetic and thermodynamic reactivity for both acyclic phenyl(mesityl)halonium and cyclic dibenzohalolium salts.
Collapse
Affiliation(s)
| | - Avik Bhattacharjee
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Bryan E Metze
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Nicole Javaly
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Edward J Valente
- Department of Chemistry, University of Portland Portland OR 97203 USA
| | | | - David R Stuart
- Department of Chemistry, Portland State University Portland OR 97201 USA
| |
Collapse
|
21
|
Garg P, Upreti GC, Singh A. Synthesis of Tritylones via Cascade Reaction of Arynes with 5-Ethoxyoxazoles. J Org Chem 2022; 87:7219-7228. [PMID: 35580308 DOI: 10.1021/acs.joc.2c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cascade reaction involving arynes and 5-ethoxyoxazoles has been developed toward the synthesis of 9-alkyl/aryl tritylones. 5-Ethoxyoxazoles undergo a [4 + 2] cycloaddition reaction with arynes followed by retro-[4 + 2] cycloaddition, a second intermolecular [4 + 2] cycloaddition reaction, and hydrolytic ring cleavage to generate substituted tritylones in good yields. The conversion of tritylone products to a series of spirocyclic anthrone derivatives has been demonstrated. The reaction is expeditious, exhibits wide scope, and employs readily available starting materials.
Collapse
Affiliation(s)
- Parul Garg
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ganesh Chandra Upreti
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
22
|
Yoshida Y, Fujimura T, Mino T, Sakamoto M. Chiral Binaphthyl‐based Iodonium Salt (Hypervalent Iodine(III)) as Hydrogen‐ and Halogen‐bonding Bifunctional Catalyst: Insight into Abnormal Counteranion Effect and Asymmetric Synthesis of N, S‐Acetals. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|